SVD module module
Contents
- Reference
 
This module provides SVD decomposition for matrices (both real and complex). Two decomposition algorithms are provided:
- JacobiSVD implementing two-sided Jacobi iterations is numerically very accurate, fast for small matrices, but very slow for larger ones.
 - BDCSVD implementing a recursive divide & conquer strategy on top of an upper-bidiagonalization which remains fast for large problems. These decompositions are accessible via the respective classes and following MatrixBase methods:
 - MatrixBase::
jacobiSvd()  - MatrixBase::
bdcSvd()  
#include <Eigen/SVD>
Classes
- 
              template<typename _MatrixType>class Eigen::BDCSVD
 - class Bidiagonal Divide and Conquer SVD
 - 
              template<typename _MatrixType, int QRPreconditioner>class Eigen::JacobiSVD
 - Two-sided Jacobi SVD decomposition of a rectangular matrix.
 - 
              template<typename Derived>class Eigen::SVDBase
 - Base class of SVD algorithms.