module
SVD moduleContents
- Reference
This module provides SVD decomposition for matrices (both real and complex). Two decomposition algorithms are provided:
- JacobiSVD implementing two-sided Jacobi iterations is numerically very accurate, fast for small matrices, but very slow for larger ones.
- BDCSVD implementing a recursive divide & conquer strategy on top of an upper-bidiagonalization which remains fast for large problems. These decompositions are accessible via the respective classes and following MatrixBase methods:
- MatrixBase::
jacobiSvd() - MatrixBase::
bdcSvd()
#include <Eigen/SVD>
Classes
-
template<typename _MatrixType>class Eigen::BDCSVD
- class Bidiagonal Divide and Conquer SVD
-
template<typename _MatrixType, int QRPreconditioner>class Eigen::JacobiSVD
- Two-sided Jacobi SVD decomposition of a rectangular matrix.
-
template<typename Derived>class Eigen::SVDBase
- Base class of SVD algorithms.