template<typename _MatrixType, int _UpLo, typename Derived>
CholmodBase class
The base class for the direct Cholesky factorization of Cholmod.
Contents
- Reference
Base classes
-
template<typename Derived>class SparseSolverBase
- A base class for sparse solvers.
Public functions
- void analyzePattern(const MatrixType& matrix)
- auto cholmod() -> cholmod_common&
- auto compute(const MatrixType& matrix) -> Derived&
- auto determinant() const -> Scalar
- void factorize(const MatrixType& matrix)
- auto info() const -> ComputationInfo
- Reports whether previous computation was successful.
- auto logDeterminant() const -> Scalar
- auto setShift(const RealScalar& offset) -> Derived&
Function documentation
template<typename _MatrixType, int _UpLo, typename Derived>
void Eigen::CholmodBase<_MatrixType, _UpLo, Derived>:: analyzePattern(const MatrixType& matrix)
Performs a symbolic decomposition on the sparsity pattern of matrix.
This function is particularly useful when solving for several problems having the same structure.
template<typename _MatrixType, int _UpLo, typename Derived>
cholmod_common& Eigen::CholmodBase<_MatrixType, _UpLo, Derived>:: cholmod()
Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations. See the Cholmod user guide for details.
template<typename _MatrixType, int _UpLo, typename Derived>
Derived& Eigen::CholmodBase<_MatrixType, _UpLo, Derived>:: compute(const MatrixType& matrix)
Computes the sparse Cholesky decomposition of matrix
template<typename _MatrixType, int _UpLo, typename Derived>
Scalar Eigen::CholmodBase<_MatrixType, _UpLo, Derived>:: determinant() const
Returns | the determinant of the underlying matrix from the current factorization |
---|
template<typename _MatrixType, int _UpLo, typename Derived>
void Eigen::CholmodBase<_MatrixType, _UpLo, Derived>:: factorize(const MatrixType& matrix)
Performs a numeric decomposition of matrix
The given matrix must have the same sparsity pattern as the matrix on which the symbolic decomposition has been performed.
template<typename _MatrixType, int _UpLo, typename Derived>
ComputationInfo Eigen::CholmodBase<_MatrixType, _UpLo, Derived>:: info() const
Reports whether previous computation was successful.
Returns | Success if computation was successful, NumericalIssue if the matrix.appears to be negative. |
---|
template<typename _MatrixType, int _UpLo, typename Derived>
Scalar Eigen::CholmodBase<_MatrixType, _UpLo, Derived>:: logDeterminant() const
Returns | the log determinant of the underlying matrix from the current factorization |
---|
template<typename _MatrixType, int _UpLo, typename Derived>
Derived& Eigen::CholmodBase<_MatrixType, _UpLo, Derived>:: setShift(const RealScalar& offset)
Returns | a reference to *this . |
---|
Sets the shift parameter that will be used to adjust the diagonal coefficients during the numerical factorization.
During the numerical factorization, an offset term is added to the diagonal coefficients:d_ii
= offset + d_ii
The default is offset=0.