Eigen namespace
Namespace containing all symbols from the Eigen library.
Namespaces
Classes
-
template<class T>class aligned_allocator
- STL compatible allocator to use with types requiring a non standrad alignment.
-
template<typename _Scalar, int _AmbientDim>class AlignedBox
- An axis aligned box.
-
template<typename StorageIndex>class AMDOrdering
-
template<typename _Scalar>class AngleAxis
- Represents a 3D rotation as a rotation angle around an arbitrary 3D axis.
-
template<typename FirstType, typename SizeType, typename IncrType>class ArithmeticSequence
-
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>class Array
- General-purpose arrays with easy API for coefficient-wise operations.
-
template<typename Derived>class ArrayBase
- Base class for all 1D and 2D array, and related expressions.
-
template<typename ExpressionType>class ArrayWrapper
- Expression of a mathematical vector or matrix as an array object.
- struct ArrayXpr
-
template<typename _MatrixType>class BDCSVD
- class Bidiagonal Divide and Conquer SVD
-
template<typename _MatrixType, typename _Preconditioner>class BiCGSTAB
- A bi conjugate gradient stabilized solver for sparse square problems.
-
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>class Block
- Expression of a fixed-size or dynamic-size block.
-
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>class BlockImpl<XprType, BlockRows, BlockCols, InnerPanel, Sparse>
-
template<typename _MatrixType, int _UpLo, typename Derived>class CholmodBase
- The base class for the direct Cholesky factorization of Cholmod.
-
template<typename _MatrixType, int _UpLo = Lower>class CholmodDecomposition
- A general Cholesky factorization and solver based on Cholmod.
-
template<typename _MatrixType, int _UpLo = Lower>class CholmodSimplicialLDLT
- A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod.
-
template<typename _MatrixType, int _UpLo = Lower>class CholmodSimplicialLLT
- A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod.
-
template<typename _MatrixType, int _UpLo = Lower>class CholmodSupernodalLLT
- A supernodal Cholesky (LLT) factorization and solver based on Cholmod.
-
template<typename StorageIndex>class COLAMDOrdering
-
template<typename _MatrixType>class ColPivHouseholderQR
- Householder rank-revealing QR decomposition of a matrix with column-pivoting.
-
template<typename XprType>class CommaInitializer
- Helper class used by the comma initializer operator.
-
template<typename _MatrixType>class CompleteOrthogonalDecomposition
- Complete orthogonal decomposition (COD) of a matrix.
-
template<typename _MatrixType>class ComplexEigenSolver
- Computes eigenvalues and eigenvectors of general complex matrices.
-
template<typename _MatrixType>class ComplexSchur
- Performs a complex Schur decomposition of a real or complex square matrix.
-
template<typename _MatrixType, int _UpLo, typename _Preconditioner>class ConjugateGradient
- A conjugate gradient solver for sparse (or dense) self-adjoint problems.
-
template<typename BinaryOp, typename LhsType, typename RhsType>class CwiseBinaryOp
- Generic expression where a coefficient-wise binary operator is applied to two expressions.
-
template<typename NullaryOp, typename PlainObjectType>class CwiseNullaryOp
- Generic expression of a matrix where all coefficients are defined by a functor.
-
template<typename TernaryOp, typename Arg1Type, typename Arg2Type, typename Arg3Type>class CwiseTernaryOp
- Generic expression where a coefficient-wise ternary operator is applied to two expressions.
-
template<typename UnaryOp, typename XprType>class CwiseUnaryOp
- Generic expression where a coefficient-wise unary operator is applied to an expression.
-
template<typename ViewOp, typename MatrixType>class CwiseUnaryView
- Generic lvalue expression of a coefficient-wise unary operator of a matrix or a vector.
- struct Dense
-
template<typename Derived>class DenseBase
- Base class for all dense matrices, vectors, and arrays.
-
template<typename Derived>class DenseCoeffsBase<Derived, DirectAccessors>
- Base class providing direct read-only coefficient access to matrices and arrays.
-
template<typename Derived>class DenseCoeffsBase<Derived, DirectWriteAccessors>
- Base class providing direct read/write coefficient access to matrices and arrays.
-
template<typename Derived>class DenseCoeffsBase<Derived, ReadOnlyAccessors>
- Base class providing read-only coefficient access to matrices and arrays.
-
template<typename Derived>class DenseCoeffsBase<Derived, WriteAccessors>
- Base class providing read/write coefficient access to matrices and arrays.
-
template<typename MatrixType, int _DiagIndex>class Diagonal
- Expression of a diagonal/subdiagonal/superdiagonal in a matrix.
-
template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime>class DiagonalMatrix
- Represents a diagonal matrix with its storage.
-
template<typename _Scalar>class DiagonalPreconditioner
- A preconditioner based on the digonal entries.
-
template<typename _DiagonalVectorType>class DiagonalWrapper
- Expression of a diagonal matrix.
-
template<typename Derived>class EigenBase
-
template<typename _MatrixType>class EigenSolver
- Computes eigenvalues and eigenvectors of general matrices.
-
template<typename ExpressionType>class ForceAlignedAccess
- Enforce aligned packet loads and stores regardless of what is requested.
-
template<typename _MatrixType>class FullPivHouseholderQR
- Householder rank-revealing QR decomposition of a matrix with full pivoting.
-
template<typename _MatrixType>class FullPivLU
- LU decomposition of a matrix with complete pivoting, and related features.
-
template<typename _MatrixType>class GeneralizedEigenSolver
- Computes the generalized eigenvalues and eigenvectors of a pair of general matrices.
-
template<typename _MatrixType>class GeneralizedSelfAdjointEigenSolver
- Computes eigenvalues and eigenvectors of the generalized selfadjoint eigen problem.
-
template<typename _MatrixType>class HessenbergDecomposition
- Reduces a square matrix to Hessenberg form by an orthogonal similarity transformation.
-
template<typename MatrixType, int _Direction>class Homogeneous
- Expression of one (or a set of) homogeneous vector(s)
-
template<typename _MatrixType>class HouseholderQR
- Householder QR decomposition of a matrix.
-
template<typename VectorsType, typename CoeffsType, int Side>class HouseholderSequence
- Sequence of Householder reflections acting on subspaces with decreasing size.
-
template<typename _Scalar, int _AmbientDim, int _Options>class Hyperplane
- A hyperplane.
- class IdentityPreconditioner
- A naive preconditioner which approximates any matrix as the identity matrix.
-
template<typename Scalar, int _UpLo = Lower, typename _OrderingType = AMDOrdering<int>>class IncompleteCholesky
- Modified Incomplete Cholesky with dual threshold.
-
template<typename _Scalar, typename _StorageIndex = int>class IncompleteLUT
- Incomplete LU factorization with dual-threshold strategy.
-
template<typename XprType, typename RowIndices, typename ColIndices>class IndexedView
- Expression of a non-sequential sub-matrix defined by arbitrary sequences of row and column indices.
-
template<int Value>class InnerStride
- Convenience specialization of Stride to specify only an inner stride See class Map for some examples.
-
template<typename XprType>class Inverse
- Expression of the inverse of another expression.
- class IOFormat
- Stores a set of parameters controlling the way matrices are printed.
-
template<typename Derived>class IterativeSolverBase
- Base class for linear iterative solvers.
-
template<typename Scalar>class JacobiRotation
- Rotation given by a cosine-sine pair.
-
template<typename _MatrixType, int QRPreconditioner>class JacobiSVD
- Two-sided Jacobi SVD decomposition of a rectangular matrix.
-
template<typename _MatrixType, int _UpLo>class LDLT
- Robust Cholesky decomposition of a matrix with pivoting.
-
template<typename _Scalar>class LeastSquareDiagonalPreconditioner
- Jacobi preconditioner for LeastSquaresConjugateGradient.
-
template<typename _MatrixType, typename _Preconditioner>class LeastSquaresConjugateGradient
- A conjugate gradient solver for sparse (or dense) least-square problems.
-
template<typename _MatrixType, int _UpLo>class LLT
- Standard Cholesky decomposition (LL^T) of a matrix and associated features.
-
template<typename PlainObjectType, int MapOptions, typename StrideType>class Map
- A matrix or vector expression mapping an existing array of data.
-
template<typename _Scalar, int _Options>class Map<const Quaternion<_Scalar>, _Options>
- Quaternion expression mapping a constant memory buffer.
-
template<typename _Scalar, int _Options>class Map<Quaternion<_Scalar>, _Options>
- Expression of a quaternion from a memory buffer.
-
template<typename SparseMatrixType>class Map<SparseMatrixType>
- Specialization of class Map for SparseMatrix-like storage.
-
template<typename Derived>class MapBase<Derived, ReadOnlyAccessors>
- Base class for dense Map and Block expression with direct access.
-
template<typename Derived>class MapBase<Derived, WriteAccessors>
- Base class for non-const dense Map and Block expression with direct access.
-
template<typename _Scalar, int _Flags, typename _StorageIndex>class MappedSparseMatrix deprecated
- Sparse matrix.
-
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>class Matrix
- The matrix class, also used for vectors and row-vectors.
-
template<typename Derived>class MatrixBase
- Base class for all dense matrices, vectors, and expressions.
-
template<typename ExpressionType>class MatrixWrapper
- Expression of an array as a mathematical vector or matrix.
- struct MatrixXpr
-
template<typename StorageIndex>class MetisOrdering
-
template<typename StorageIndex>class NaturalOrdering
-
template<typename ExpressionType>class NestByValue
- Expression which must be nested by value.
-
template<typename ExpressionType, template<typename> class StorageBase>class NoAlias
- Pseudo expression providing an operator = assuming no aliasing.
-
template<typename T>class NumTraits
- Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
-
template<int Value>class OuterStride
- Convenience specialization of Stride to specify only an outer stride See class Map for some examples.
-
template<typename _Scalar, int _AmbientDim, int _Options>class ParametrizedLine
- A parametrized line.
-
template<typename MatrixType, int Options>class PardisoLDLT
- A sparse direct Cholesky (LDLT) factorization and solver based on the PARDISO library.
-
template<typename MatrixType, int _UpLo>class PardisoLLT
- A sparse direct Cholesky (LLT) factorization and solver based on the PARDISO library.
-
template<typename MatrixType>class PardisoLU
- A sparse direct LU factorization and solver based on the PARDISO library.
-
template<typename _MatrixType>class PartialPivLU
- LU decomposition of a matrix with partial pivoting, and related features.
-
template<typename MatrixType, typename MemberOp, int Direction>class PartialReduxExpr
- Generic expression of a partially reduxed matrix.
-
template<typename _MatrixType, int _UpLo>class PastixLDLT
- A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library.
-
template<typename _MatrixType, int _UpLo>class PastixLLT
- A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library.
-
template<typename _MatrixType, bool IsStrSym>class PastixLU
- Interface to the PaStix solver.
-
template<typename Derived>class PermutationBase
- Base class for permutations.
-
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex>class PermutationMatrix
- Permutation matrix.
- struct PermutationStorage
-
template<typename _IndicesType>class PermutationWrapper
- Class to view a vector of integers as a permutation matrix.
-
template<typename Derived>class PlainObjectBase
- Dense storage base class for matrices and arrays.
-
template<typename _Lhs, typename _Rhs, int Option>class Product
- Expression of the product of two arbitrary matrices or vectors.
-
template<typename _Scalar, int _Options>class Quaternion
- The quaternion class used to represent 3D orientations and rotations.
-
template<class Derived>class QuaternionBase
- Base class for quaternion expressions.
-
template<typename _MatrixType>class RealQZ
- Performs a real QZ decomposition of a pair of square matrices.
-
template<typename _MatrixType>class RealSchur
- Performs a real Schur decomposition of a square matrix.
-
template<typename PlainObjectType, int Options, typename StrideType>class Ref
- A matrix or vector expression mapping an existing expression.
-
template<typename SparseMatrixType, int Options>class Ref<SparseMatrixType, Options>
- A sparse matrix expression referencing an existing sparse expression.
-
template<typename SparseVectorType>class Ref<SparseVectorType>
- A sparse vector expression referencing an existing sparse vector expression.
-
template<typename MatrixType, int RowFactor, int ColFactor>class Replicate
- Expression of the multiple replication of a matrix or vector.
-
template<typename XprType, int Rows, int Cols, int Order>class Reshaped
- Expression of a fixed-size or dynamic-size reshape.
-
template<typename MatrixType, int Direction>class Reverse
- Expression of the reverse of a vector or matrix.
-
template<typename _Scalar>class Rotation2D
- Represents a rotation/orientation in a 2 dimensional space.
-
template<typename Derived, int _Dim>class RotationBase
- Common base class for compact rotation representations.
-
template<typename ScalarA, typename ScalarB, typename BinaryOp = internal::scalar_product_op<ScalarA,ScalarB>>class ScalarBinaryOpTraits
- Determines whether the given binary operation of two numeric types is allowed and what the scalar return type is.
-
template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType>class Select
- Expression of a coefficient wise version of the C++ ternary operator ?:
-
template<typename _MatrixType>class SelfAdjointEigenSolver
- Computes eigenvalues and eigenvectors of selfadjoint matrices.
-
template<typename _MatrixType, unsigned int UpLo>class SelfAdjointView
- Expression of a selfadjoint matrix from a triangular part of a dense matrix.
-
template<typename _MatrixType, int _UpLo, typename _Ordering>class SimplicialCholesky deprecated
-
template<typename Derived>class SimplicialCholeskyBase
- A base class for direct sparse Cholesky factorizations.
-
template<typename _MatrixType, int _UpLo, typename _Ordering>class SimplicialLDLT
- A direct sparse LDLT Cholesky factorizations without square root.
-
template<typename _MatrixType, int _UpLo, typename _Ordering>class SimplicialLLT
- A direct sparse LLT Cholesky factorizations.
-
template<typename Decomposition, typename RhsType>class Solve
- Pseudo expression representing a solving operation.
-
template<typename Derived>class SolverBase
- A base class for matrix decomposition and solvers.
- struct SolverStorage
-
template<typename Decomposition, typename RhsType, typename GuessType>class SolveWithGuess
- Pseudo expression representing a solving operation.
- struct Sparse
-
template<typename Derived>class SparseCompressedBase
- Common base class for sparse [compressed]-{row|column}-storage format.
-
template<typename _MatrixType, typename _OrderingType>class SparseLU
- Sparse supernodal LU factorization for general matrices.
-
template<typename Derived>class SparseMapBase<Derived, ReadOnlyAccessors>
- Common base class for Map and Ref instance of sparse matrix and vector.
-
template<typename Derived>class SparseMapBase<Derived, WriteAccessors>
- Common base class for writable Map and Ref instance of sparse matrix and vector.
-
template<typename _Scalar, int _Options, typename _StorageIndex>class SparseMatrix
- A versatible sparse matrix representation.
-
template<typename Derived>class SparseMatrixBase
- Base class of any sparse matrices or sparse expressions.
-
template<typename _MatrixType, typename _OrderingType>class SparseQR
- Sparse left-looking rank-revealing QR factorization.
-
template<typename MatrixType, unsigned int _Mode>class SparseSelfAdjointView
- Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
-
template<typename Derived>class SparseSolverBase
- A base class for sparse solvers.
-
template<typename _Scalar, int _Options, typename _StorageIndex>class SparseVector
- a sparse vector class
-
template<typename MatrixType>class SparseView
- Expression of a dense or sparse matrix with zero or too small values removed.
-
template<typename _MatrixType>class SPQR
- Sparse QR factorization based on SuiteSparseQR library.
-
template<int _OuterStrideAtCompileTime, int _InnerStrideAtCompileTime>class Stride
- Holds strides information for Map.
-
template<typename _MatrixType>class SuperILU
- A sparse direct incomplete LU factorization and solver based on the SuperLU library.
-
template<typename _MatrixType>class SuperLU
- A sparse direct LU factorization and solver based on the SuperLU library.
-
template<typename _MatrixType, typename Derived>class SuperLUBase
- The base class for the direct and incomplete LU factorization of SuperLU.
-
template<typename Derived>class SVDBase
- Base class of SVD algorithms.
-
template<typename _Scalar, int _Dim, int _Mode, int _Options>class Transform
- Represents an homogeneous transformation in a N dimensional space.
-
template<typename _Scalar, int _Dim>class Translation
- Represents a translation transformation.
-
template<typename MatrixType>class Transpose
- Expression of the transpose of a matrix.
-
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex>class Transpositions
- Represents a sequence of transpositions (row/column interchange)
- struct TranspositionsStorage
-
template<typename Derived>class TriangularBase
- Base class for triangular part in a matrix.
-
template<typename _MatrixType, unsigned int _Mode>class TriangularView
- Expression of a triangular part in a matrix.
-
template<typename _MatrixType, unsigned int _Mode>class TriangularViewImpl<_MatrixType, _Mode, Dense>
- Base class for a triangular part in a dense matrix.
-
template<typename MatrixType, unsigned int Mode>class TriangularViewImpl<MatrixType, Mode, Sparse>
- Base class for a triangular part in a sparse matrix.
-
template<typename _MatrixType>class Tridiagonalization
- Tridiagonal decomposition of a selfadjoint matrix.
-
template<typename Scalar, typename StorageIndex = typename SparseMatrix<Scalar>::StorageIndex>class Triplet
- A small structure to hold a non zero as a triplet (i,j,value).
-
template<typename _MatrixType>class UmfPackLU
- A sparse LU factorization and solver based on UmfPack.
-
template<typename VectorType, int Size>class VectorBlock
- Expression of a fixed-size or dynamic-size sub-vector.
-
template<typename ExpressionType, int Direction>class VectorwiseOp
- Pseudo expression providing broadcasting and partial reduction operations.
-
template<typename ExpressionType>class WithFormat
- Pseudo expression providing matrix output with given format.
Enums
- enum (anonymous) { StandardCompressedFormat = 2 }
- enum AccessorLevels { ReadOnlyAccessors, WriteAccessors, DirectAccessors, DirectWriteAccessors }
- enum AlignmentType { Unaligned =0, Aligned8 =8, Aligned16 =16, Aligned32 =32, Aligned64 =64, Aligned128 =128, AlignedMask =255, Aligned =16 deprecated, AlignedMax = Unaligned }
- enum ComputationInfo { Success = 0, NumericalIssue = 1, NoConvergence = 2, InvalidInput = 3 }
- enum DecompositionOptions { Pivoting = 0x01, NoPivoting = 0x02, ComputeFullU = 0x04, ComputeThinU = 0x08, ComputeFullV = 0x10, ComputeThinV = 0x20, EigenvaluesOnly = 0x40, ComputeEigenvectors = 0x80, EigVecMask = EigenvaluesOnly | ComputeEigenvectors, Ax_lBx = 0x100, ABx_lx = 0x200, BAx_lx = 0x400, GenEigMask = Ax_lBx | ABx_lx | BAx_lx }
- enum DirectionType { Vertical, Horizontal, BothDirections }
- enum QRPreconditioners { NoQRPreconditioner, HouseholderQRPreconditioner, ColPivHouseholderQRPreconditioner, FullPivHouseholderQRPreconditioner }
- enum SideType { OnTheLeft = 1, OnTheRight = 2 }
- enum StorageOptions { ColMajor = 0, RowMajor = 0x1, AutoAlign = 0, DontAlign = 0x2 }
- enum TransformTraits { Isometry = 0x1, Affine = 0x2, AffineCompact = 0x10 | Affine, Projective = 0x20 }
- enum UpLoType { Lower =0x1, Upper =0x2, UnitDiag =0x4, ZeroDiag =0x8, UnitLower =UnitDiag|Lower, UnitUpper =UnitDiag|Upper, StrictlyLower =ZeroDiag|Lower, StrictlyUpper =ZeroDiag|Upper, SelfAdjoint =0x10, Symmetric =0x20 }
Typedefs
- using Index = EIGEN_DEFAULT_DENSE_INDEX_TYPE
- The Index type as used for the API.
Functions
-
template<typename Derived>auto abs(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_abs_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto abs2(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_abs2_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto acos(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_acos_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto acosh(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_acosh_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto arg(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_arg_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto asin(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_asin_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto asinh(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_asinh_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto atan(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_atan_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto atanh(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_atanh_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto ceil(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_ceil_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto conj(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_conjugate_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto cos(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_cos_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto cosh(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_cosh_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto cube(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_cube_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto digamma(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_digamma_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto erf(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_erf_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto erfc(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_erfc_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto exp(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_exp_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto expm1(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_expm1_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto floor(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_floor_op<typename Derived::Scalar>, const Derived> -
template<typename VectorsType, typename CoeffsType>auto householderSequence(const VectorsType& v, const CoeffsType& h) -> HouseholderSequence<VectorsType, CoeffsType>
- Convenience function for constructing a Householder sequence.
-
template<typename Derived>auto imag(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_imag_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto inverse(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_inverse_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto isfinite(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_isfinite_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto isinf(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_isinf_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto isnan(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_isnan_op<typename Derived::Scalar>, const Derived> - auto klu_solve(klu_symbolic* Symbolic, klu_numeric* Numeric, Index ldim, Index nrhs, double B[], klu_common* Common, double) -> int
- A sparse LU factorization and solver based on KLU.
-
template<typename SizeType, typename IncrType>auto lastN(SizeType size, IncrType incr) -> auto
-
template<typename SizeType>auto lastN(SizeType size) -> auto
-
template<typename Derived>auto lgamma(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_lgamma_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto log(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_log_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto log10(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_log10_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto log1p(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_log1p_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto logistic(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_logistic_op<typename Derived::Scalar>, const Derived> -
template<typename SparseDerived, typename PermDerived>auto operator*(const SparseMatrixBase<SparseDerived>& matrix, const PermutationBase<PermDerived>& perm) -> const Product<SparseDerived, PermDerived, AliasFreeProduct>
-
template<typename SparseDerived, typename PermDerived>auto operator*(const PermutationBase<PermDerived>& perm, const SparseMatrixBase<SparseDerived>& matrix) -> const Product<PermDerived, SparseDerived, AliasFreeProduct>
-
template<typename SparseDerived, typename PermutationType>auto operator*(const SparseMatrixBase<SparseDerived>& matrix, const InverseImpl<PermutationType, PermutationStorage>& tperm) -> const Product<SparseDerived, Inverse<PermutationType>, AliasFreeProduct>
-
template<typename SparseDerived, typename PermutationType>auto operator*(const InverseImpl<PermutationType, PermutationStorage>& tperm, const SparseMatrixBase<SparseDerived>& matrix) -> const Product<Inverse<PermutationType>, SparseDerived, AliasFreeProduct>
-
template<typename MatrixDerived, typename TranspositionsDerived>auto operator*(const MatrixBase<MatrixDerived>& matrix, const TranspositionsBase<TranspositionsDerived>& transpositions) -> const Product<MatrixDerived, TranspositionsDerived, AliasFreeProduct>
-
template<typename TranspositionsDerived, typename MatrixDerived>auto operator*(const TranspositionsBase<TranspositionsDerived>& transpositions, const MatrixBase<MatrixDerived>& matrix) -> const Product<TranspositionsDerived, MatrixDerived, AliasFreeProduct>
-
template<typename OtherDerived, typename VectorsType, typename CoeffsType, int Side>auto operator*(const MatrixBase<OtherDerived>& other, const HouseholderSequence<VectorsType, CoeffsType, Side>& h) -> internal::matrix_type_times_scalar_type<typename VectorsType::Scalar, OtherDerived>::Type
- Computes the product of a matrix with a Householder sequence.
-
template<typename MatrixDerived, typename PermutationDerived>auto operator*(const MatrixBase<MatrixDerived>& matrix, const PermutationBase<PermutationDerived>& permutation) -> const Product<MatrixDerived, PermutationDerived, AliasFreeProduct>
-
template<typename PermutationDerived, typename MatrixDerived>auto operator*(const PermutationBase<PermutationDerived>& permutation, const MatrixBase<MatrixDerived>& matrix) -> const Product<PermutationDerived, MatrixDerived, AliasFreeProduct>
-
template<typename Derived>auto real(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_real_op<typename Derived::Scalar>, const Derived> -
template<typename VectorsType, typename CoeffsType>auto rightHouseholderSequence(const VectorsType& v, const CoeffsType& h) -> HouseholderSequence<VectorsType, CoeffsType, OnTheRight>
- Convenience function for constructing a Householder sequence.
-
template<typename Derived>auto round(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_round_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto rsqrt(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_rsqrt_op<typename Derived::Scalar>, const Derived> -
template<typename FirstType, typename LastType, typename IncrType>auto seq(FirstType f, LastType l, IncrType incr) -> auto
-
template<typename FirstType, typename LastType>auto seq(FirstType f, LastType l) -> auto
-
template<typename FirstType, typename SizeType, typename IncrType>auto seqN(FirstType first, SizeType size, IncrType incr) -> ArithmeticSequence<typename internal::cleanup_index_type<FirstType>::type, typename internal::cleanup_index_type<SizeType>::type, typename internal::cleanup_seq_incr<IncrType>::type>
-
template<typename FirstType, typename SizeType>auto seqN(FirstType first, SizeType size) -> ArithmeticSequence<typename internal::cleanup_index_type<FirstType>::type, typename internal::cleanup_index_type<SizeType>::type>
-
template<typename Derived>auto sign(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_sign_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto sin(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_sin_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto sinh(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_sinh_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto sqrt(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_sqrt_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto square(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_square_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto tan(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_tan_op<typename Derived::Scalar>, const Derived> -
template<typename Derived>auto tanh(const Eigen::
ArrayBase<Derived>& x) -> const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_tanh_op<typename Derived::Scalar>, const Derived> -
template<typename Derived, typename OtherDerived>auto umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, bool with_scaling = true) -> internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type
- Returns the transformation between two point sets.
-
template<typename _Scalar, int _Options, typename _StorageIndex>auto viewAsCholmod(Ref<SparseMatrix<_Scalar, _Options, _StorageIndex>> mat) -> cholmod_sparse
-
template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo>auto viewAsCholmod(const SparseSelfAdjointView<const SparseMatrix<_Scalar, _Options, _Index>, UpLo>& mat) -> cholmod_sparse
-
template<typename Derived>auto viewAsCholmod(MatrixBase<Derived>& mat) -> cholmod_dense
-
template<typename Scalar, int Flags, typename StorageIndex>auto viewAsEigen(cholmod_sparse& cm) -> MappedSparseMatrix<Scalar, Flags, StorageIndex>
Variables
- const int Dynamic
- const int DynamicIndex
- const int HugeCost
- const int Infinity
- const int UndefinedIncr
Enum documentation
enum Eigen:: (anonymous)
Enumerators | |
---|---|
StandardCompressedFormat |
used by Ref<SparseMatrix> to specify whether the input storage must be in standard compressed form |
Typedef documentation
typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE Eigen:: Index
The Index type as used for the API.
To change this, #define
the preprocessor symbol EIGEN_DEFAULT_DENSE_INDEX_TYPE
.
Function documentation
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_abs_op<typename Derived::Scalar>, const Derived> Eigen:: abs(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise absolute value of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_abs2_op<typename Derived::Scalar>, const Derived> Eigen:: abs2(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise squared absolute value of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_acos_op<typename Derived::Scalar>, const Derived> Eigen:: acos(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise arc-consine of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_acosh_op<typename Derived::Scalar>, const Derived> Eigen:: acosh(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise inverse hyperbolic cosine of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_arg_op<typename Derived::Scalar>, const Derived> Eigen:: arg(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise complex argument of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_asin_op<typename Derived::Scalar>, const Derived> Eigen:: asin(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise arc-sine of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_asinh_op<typename Derived::Scalar>, const Derived> Eigen:: asinh(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise inverse hyperbolic sine of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_atan_op<typename Derived::Scalar>, const Derived> Eigen:: atan(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise arc-tangent of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_atanh_op<typename Derived::Scalar>, const Derived> Eigen:: atanh(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise inverse hyperbolic tangent of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_ceil_op<typename Derived::Scalar>, const Derived> Eigen:: ceil(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise nearest integer not less than the giben value of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_conjugate_op<typename Derived::Scalar>, const Derived> Eigen:: conj(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise complex conjugate of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_cos_op<typename Derived::Scalar>, const Derived> Eigen:: cos(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise cosine of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_cosh_op<typename Derived::Scalar>, const Derived> Eigen:: cosh(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise hyperbolic cosine of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_cube_op<typename Derived::Scalar>, const Derived> Eigen:: cube(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise cube (power 3) of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_digamma_op<typename Derived::Scalar>, const Derived> Eigen:: digamma(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise derivative of lgamma of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_erf_op<typename Derived::Scalar>, const Derived> Eigen:: erf(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise error function of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_erfc_op<typename Derived::Scalar>, const Derived> Eigen:: erfc(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise complement error function of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_exp_op<typename Derived::Scalar>, const Derived> Eigen:: exp(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise exponential of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_expm1_op<typename Derived::Scalar>, const Derived> Eigen:: expm1(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise exponential of a value minus 1 of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_floor_op<typename Derived::Scalar>, const Derived> Eigen:: floor(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise nearest integer not greater than the giben value of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_imag_op<typename Derived::Scalar>, const Derived> Eigen:: imag(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise imaginary part of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_inverse_op<typename Derived::Scalar>, const Derived> Eigen:: inverse(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise inverse of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_isfinite_op<typename Derived::Scalar>, const Derived> Eigen:: isfinite(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise finite value test of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_isinf_op<typename Derived::Scalar>, const Derived> Eigen:: isinf(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise infinite value test of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_isnan_op<typename Derived::Scalar>, const Derived> Eigen:: isnan(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise not-a-number test of x |
---|
template<typename SizeType, typename IncrType>
auto Eigen:: lastN(SizeType size,
IncrType incr)
Returns | a symbolic ArithmeticSequence representing the last size elements with increment incr. |
---|
[c++11]
It is a shortcut for: seqN(last-(size-fix<1>)*incr, size, incr)
template<typename SizeType>
auto Eigen:: lastN(SizeType size)
Returns | a symbolic ArithmeticSequence representing the last size elements with a unit increment. |
---|
[c++11]
It is a shortcut for: seq(last+fix<1>-size, last)
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_lgamma_op<typename Derived::Scalar>, const Derived> Eigen:: lgamma(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise natural logarithm of the gamma function of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_log_op<typename Derived::Scalar>, const Derived> Eigen:: log(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise natural logarithm of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_log10_op<typename Derived::Scalar>, const Derived> Eigen:: log10(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise base 10 logarithm of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_log1p_op<typename Derived::Scalar>, const Derived> Eigen:: log1p(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise natural logarithm of 1 plus the value of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_logistic_op<typename Derived::Scalar>, const Derived> Eigen:: logistic(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise logistic function of x |
---|
template<typename SparseDerived, typename PermDerived>
const Product<SparseDerived, PermDerived, AliasFreeProduct> Eigen:: operator*(const SparseMatrixBase<SparseDerived>& matrix,
const PermutationBase<PermDerived>& perm)
Returns | the matrix with the permutation applied to the columns |
---|
template<typename SparseDerived, typename PermDerived>
const Product<PermDerived, SparseDerived, AliasFreeProduct> Eigen:: operator*(const PermutationBase<PermDerived>& perm,
const SparseMatrixBase<SparseDerived>& matrix)
Returns | the matrix with the permutation applied to the rows |
---|
template<typename SparseDerived, typename PermutationType>
const Product<SparseDerived, Inverse<PermutationType>, AliasFreeProduct> Eigen:: operator*(const SparseMatrixBase<SparseDerived>& matrix,
const InverseImpl<PermutationType, PermutationStorage>& tperm)
Returns | the matrix with the inverse permutation applied to the columns. |
---|
template<typename SparseDerived, typename PermutationType>
const Product<Inverse<PermutationType>, SparseDerived, AliasFreeProduct> Eigen:: operator*(const InverseImpl<PermutationType, PermutationStorage>& tperm,
const SparseMatrixBase<SparseDerived>& matrix)
Returns | the matrix with the inverse permutation applied to the rows. |
---|
template<typename MatrixDerived, typename TranspositionsDerived>
const Product<MatrixDerived, TranspositionsDerived, AliasFreeProduct> Eigen:: operator*(const MatrixBase<MatrixDerived>& matrix,
const TranspositionsBase<TranspositionsDerived>& transpositions)
Returns | the matrix with the transpositions applied to the columns. |
---|
template<typename TranspositionsDerived, typename MatrixDerived>
const Product<TranspositionsDerived, MatrixDerived, AliasFreeProduct> Eigen:: operator*(const TranspositionsBase<TranspositionsDerived>& transpositions,
const MatrixBase<MatrixDerived>& matrix)
Returns | the matrix with the transpositions applied to the rows. |
---|
template<typename OtherDerived, typename VectorsType, typename CoeffsType, int Side>
internal::matrix_type_times_scalar_type<typename VectorsType::Scalar, OtherDerived>::Type Eigen:: operator*(const MatrixBase<OtherDerived>& other,
const HouseholderSequence<VectorsType, CoeffsType, Side>& h)
Computes the product of a matrix with a Householder sequence.
Parameters | |
---|---|
other in | Matrix being multiplied. |
h in | HouseholderSequence being multiplied. |
Returns | Expression object representing the product. |
This function computes where is the matrix other
and is the Householder sequence represented by h
.
template<typename MatrixDerived, typename PermutationDerived>
const Product<MatrixDerived, PermutationDerived, AliasFreeProduct> Eigen:: operator*(const MatrixBase<MatrixDerived>& matrix,
const PermutationBase<PermutationDerived>& permutation)
Returns | the matrix with the permutation applied to the columns. |
---|
template<typename PermutationDerived, typename MatrixDerived>
const Product<PermutationDerived, MatrixDerived, AliasFreeProduct> Eigen:: operator*(const PermutationBase<PermutationDerived>& permutation,
const MatrixBase<MatrixDerived>& matrix)
Returns | the matrix with the permutation applied to the rows. |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_real_op<typename Derived::Scalar>, const Derived> Eigen:: real(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise real part of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_round_op<typename Derived::Scalar>, const Derived> Eigen:: round(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise nearest integer of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_rsqrt_op<typename Derived::Scalar>, const Derived> Eigen:: rsqrt(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise reciprocal square root of x |
---|
template<typename FirstType, typename LastType, typename IncrType>
auto Eigen:: seq(FirstType f,
LastType l,
IncrType incr)
Returns | an ArithmeticSequence starting at f, up (or down) to l, and with positive (or negative) increment incr |
---|
It is essentially an alias to: seqN(f, (l-f+incr)/incr, incr);
template<typename FirstType, typename LastType>
auto Eigen:: seq(FirstType f,
LastType l)
Returns | an ArithmeticSequence starting at f, up (or down) to l, and unit increment |
---|
It is essentially an alias to: seqN(f,l-f+1);
template<typename FirstType, typename SizeType, typename IncrType>
ArithmeticSequence<typename internal::cleanup_index_type<FirstType>::type, typename internal::cleanup_index_type<SizeType>::type, typename internal::cleanup_seq_incr<IncrType>::type> Eigen:: seqN(FirstType first,
SizeType size,
IncrType incr)
Returns | an ArithmeticSequence starting at first, of length size, and increment incr |
---|
template<typename FirstType, typename SizeType>
ArithmeticSequence<typename internal::cleanup_index_type<FirstType>::type, typename internal::cleanup_index_type<SizeType>::type> Eigen:: seqN(FirstType first,
SizeType size)
Returns | an ArithmeticSequence starting at first, of length size, and unit increment |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_sign_op<typename Derived::Scalar>, const Derived> Eigen:: sign(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise sign (or 0) of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_sin_op<typename Derived::Scalar>, const Derived> Eigen:: sin(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise sine of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_sinh_op<typename Derived::Scalar>, const Derived> Eigen:: sinh(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise hyperbolic sine of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_sqrt_op<typename Derived::Scalar>, const Derived> Eigen:: sqrt(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise square root of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_square_op<typename Derived::Scalar>, const Derived> Eigen:: square(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise square (power 2) of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_tan_op<typename Derived::Scalar>, const Derived> Eigen:: tan(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise tangent of x |
---|
template<typename Derived>
const Eigen:: CwiseUnaryOp<Eigen::internal::scalar_tanh_op<typename Derived::Scalar>, const Derived> Eigen:: tanh(const Eigen:: ArrayBase<Derived>& x)
Returns | an expression of the coefficient-wise hyperbolic tangent of x |
---|
template<typename _Scalar, int _Options, typename _StorageIndex>
cholmod_sparse Eigen:: viewAsCholmod(Ref<SparseMatrix<_Scalar, _Options, _StorageIndex>> mat)
Wraps the Eigen sparse matrix mat into a Cholmod sparse matrix object. Note that the data are shared.
template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo>
cholmod_sparse Eigen:: viewAsCholmod(const SparseSelfAdjointView<const SparseMatrix<_Scalar, _Options, _Index>, UpLo>& mat)
Returns a view of the Eigen sparse matrix mat as Cholmod sparse matrix. The data are not copied but shared.
template<typename Derived>
cholmod_dense Eigen:: viewAsCholmod(MatrixBase<Derived>& mat)
Returns a view of the Eigen dense matrix mat as Cholmod dense matrix. The data are not copied but shared.
template<typename Scalar, int Flags, typename StorageIndex>
MappedSparseMatrix<Scalar, Flags, StorageIndex> Eigen:: viewAsEigen(cholmod_sparse& cm)
Returns a view of the Cholmod sparse matrix cm as an Eigen sparse matrix. The data are not copied but shared.
Variable documentation
const int Eigen:: DynamicIndex
This value means that a signed quantity (e.g., a signed index) is not known at compile-time, and that instead its value has to be specified at runtime.
const int Eigen:: HugeCost
This value means that the cost to evaluate an expression coefficient is either very expensive or cannot be known at compile time.
This value has to be positive to (1) simplify cost computation, and (2) allow to distinguish between a very expensive and very very expensive expressions. It thus must also be large enough to make sure unrolling won't happen and that sub expressions will be evaluated, but not too large to avoid overflow.
const int Eigen:: Infinity
This value means +Infinity; it is currently used only as the p parameter to MatrixBase::
const int Eigen:: UndefinedIncr
This value means that the increment to go from one value to another in a sequence is not constant for each step.