template<typename _MatrixType>
Eigen::FullPivHouseholderQR class

Householder rank-revealing QR decomposition of a matrix with full pivoting.

Template parameters
_MatrixType the type of the matrix of which we are computing the QR decomposition

This class performs a rank-revealing QR decomposition of a matrix A into matrices P, P', Q and R such that

\[ \mathbf{P} \, \mathbf{A} \, \mathbf{P}' = \mathbf{Q} \, \mathbf{R} \]

by using Householder transformations. Here, P and P' are permutation matrices, Q a unitary matrix and R an upper triangular matrix.

This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR.

This class supports the inplace decomposition mechanism.

Base classes

template<typename Derived>
class SolverBase
A base class for matrix decomposition and solvers.

Public types

enum (anonymous) { MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }
using Base = SolverBase<FullPivHouseholderQR>
using ColVectorType = internal::plain_col_type<MatrixType>::type
using HCoeffsType = internal::plain_diag_type<MatrixType>::type
using IntDiagSizeVectorType = Matrix<StorageIndex, 1, EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime, RowsAtCompileTime), RowMajor, 1, EIGEN_SIZE_MIN_PREFER_FIXED(MaxColsAtCompileTime, MaxRowsAtCompileTime)>
using MatrixQReturnType = internal::FullPivHouseholderQRMatrixQReturnType<MatrixType>
using MatrixType = _MatrixType
using PermutationType = PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime>
using PlainObject = MatrixType::PlainObject
using RowVectorType = internal::plain_row_type<MatrixType>::type

Constructors, destructors, conversion operators

FullPivHouseholderQR()
Default Constructor.
FullPivHouseholderQR(Index rows, Index cols)
Default Constructor with memory preallocation.
template<typename InputType>
FullPivHouseholderQR(const EigenBase<InputType>& matrix) explicit
Constructs a QR factorization from a given matrix.
template<typename InputType>
FullPivHouseholderQR(EigenBase<InputType>& matrix) explicit
Constructs a QR factorization from a given matrix.

Public functions

auto absDeterminant() const -> MatrixType::RealScalar
auto cols() const -> Index
auto colsPermutation() const -> const PermutationType&
template<typename InputType>
auto compute(const EigenBase<InputType>& matrix) -> FullPivHouseholderQR&
template<typename InputType>
auto compute(const EigenBase<InputType>& matrix) -> FullPivHouseholderQR<MatrixType>&
auto dimensionOfKernel() const -> Index
auto hCoeffs() const -> const HCoeffsType&
auto inverse() const -> const Inverse<FullPivHouseholderQR>
auto isInjective() const -> bool
auto isInvertible() const -> bool
auto isSurjective() const -> bool
auto logAbsDeterminant() const -> MatrixType::RealScalar
auto matrixQ(void) const -> MatrixQReturnType
auto matrixQR() const -> const MatrixType&
auto maxPivot() const -> RealScalar
auto nonzeroPivots() const -> Index
auto rank() const -> Index
auto rows() const -> Index
auto rowsTranspositions() const -> const IntDiagSizeVectorType&
auto setThreshold(const RealScalar& threshold) -> FullPivHouseholderQR&
auto setThreshold(Default_t) -> FullPivHouseholderQR&
template<typename Rhs>
auto solve(const MatrixBase<Rhs>& b) const -> const Solve<FullPivHouseholderQR, Rhs>
auto threshold() const -> RealScalar

Protected static functions

static void check_template_parameters()

Protected functions

void computeInPlace()

Protected variables

PermutationType m_cols_permutation
IntDiagSizeVectorType m_cols_transpositions
Index m_det_pq
HCoeffsType m_hCoeffs
bool m_isInitialized
RealScalar m_maxpivot
Index m_nonzero_pivots
RealScalar m_precision
RealScalar m_prescribedThreshold
MatrixType m_qr
IntDiagSizeVectorType m_rows_transpositions
RowVectorType m_temp
bool m_usePrescribedThreshold

Enum documentation

template<typename _MatrixType>
enum Eigen::FullPivHouseholderQR<_MatrixType>::(anonymous)

Enumerators
MaxRowsAtCompileTime
MaxColsAtCompileTime

Typedef documentation

template<typename _MatrixType>
typedef SolverBase<FullPivHouseholderQR> Eigen::FullPivHouseholderQR<_MatrixType>::Base

template<typename _MatrixType>
typedef internal::plain_col_type<MatrixType>::type Eigen::FullPivHouseholderQR<_MatrixType>::ColVectorType

template<typename _MatrixType>
typedef internal::plain_diag_type<MatrixType>::type Eigen::FullPivHouseholderQR<_MatrixType>::HCoeffsType

template<typename _MatrixType>
typedef Matrix<StorageIndex, 1, EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime, RowsAtCompileTime), RowMajor, 1, EIGEN_SIZE_MIN_PREFER_FIXED(MaxColsAtCompileTime, MaxRowsAtCompileTime)> Eigen::FullPivHouseholderQR<_MatrixType>::IntDiagSizeVectorType

template<typename _MatrixType>
typedef internal::FullPivHouseholderQRMatrixQReturnType<MatrixType> Eigen::FullPivHouseholderQR<_MatrixType>::MatrixQReturnType

template<typename _MatrixType>
typedef _MatrixType Eigen::FullPivHouseholderQR<_MatrixType>::MatrixType

template<typename _MatrixType>
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> Eigen::FullPivHouseholderQR<_MatrixType>::PermutationType

template<typename _MatrixType>
typedef MatrixType::PlainObject Eigen::FullPivHouseholderQR<_MatrixType>::PlainObject

template<typename _MatrixType>
typedef internal::plain_row_type<MatrixType>::type Eigen::FullPivHouseholderQR<_MatrixType>::RowVectorType

Function documentation

template<typename _MatrixType>
Eigen::FullPivHouseholderQR<_MatrixType>::FullPivHouseholderQR()

Default Constructor.

The default constructor is useful in cases in which the user intends to perform decompositions via FullPivHouseholderQR::compute(const MatrixType&).

template<typename _MatrixType>
Eigen::FullPivHouseholderQR<_MatrixType>::FullPivHouseholderQR(Index rows, Index cols)

Default Constructor with memory preallocation.

Like the default constructor but with preallocation of the internal data according to the specified problem size.

template<typename _MatrixType> template<typename InputType>
Eigen::FullPivHouseholderQR<_MatrixType>::FullPivHouseholderQR(const EigenBase<InputType>& matrix) explicit

Constructs a QR factorization from a given matrix.

This constructor computes the QR factorization of the matrix matrix by calling the method compute(). It is a short cut for:

FullPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
qr.compute(matrix);

template<typename _MatrixType> template<typename InputType>
Eigen::FullPivHouseholderQR<_MatrixType>::FullPivHouseholderQR(EigenBase<InputType>& matrix) explicit

Constructs a QR factorization from a given matrix.

This overloaded constructor is provided for inplace decomposition when MatrixType is a Eigen::Ref.

template<typename _MatrixType>
MatrixType::RealScalar Eigen::FullPivHouseholderQR<_MatrixType>::absDeterminant() const

Returns the absolute value of the determinant of the matrix of which *this is the QR decomposition. It has only linear complexity (that is, O(n) where n is the dimension of the square matrix) as the QR decomposition has already been computed.

template<typename _MatrixType>
Index Eigen::FullPivHouseholderQR<_MatrixType>::cols() const

template<typename _MatrixType>
const PermutationType& Eigen::FullPivHouseholderQR<_MatrixType>::colsPermutation() const

Returns a const reference to the column permutation matrix

template<typename _MatrixType> template<typename InputType>
FullPivHouseholderQR& Eigen::FullPivHouseholderQR<_MatrixType>::compute(const EigenBase<InputType>& matrix)

template<typename _MatrixType> template<typename InputType>
FullPivHouseholderQR<MatrixType>& Eigen::FullPivHouseholderQR<_MatrixType>::compute(const EigenBase<InputType>& matrix)

Performs the QR factorization of the given matrix matrix. The result of the factorization is stored into *this, and a reference to *this is returned.

template<typename _MatrixType>
Index Eigen::FullPivHouseholderQR<_MatrixType>::dimensionOfKernel() const

Returns the dimension of the kernel of the matrix of which *this is the QR decomposition.

template<typename _MatrixType>
const HCoeffsType& Eigen::FullPivHouseholderQR<_MatrixType>::hCoeffs() const

Returns a const reference to the vector of Householder coefficients used to represent the factor Q.

For advanced uses only.

template<typename _MatrixType>
const Inverse<FullPivHouseholderQR> Eigen::FullPivHouseholderQR<_MatrixType>::inverse() const

Returns the inverse of the matrix of which *this is the QR decomposition.

template<typename _MatrixType>
bool Eigen::FullPivHouseholderQR<_MatrixType>::isInjective() const

Returns true if the matrix of which *this is the QR decomposition represents an injective linear map, i.e. has trivial kernel; false otherwise.

template<typename _MatrixType>
bool Eigen::FullPivHouseholderQR<_MatrixType>::isInvertible() const

Returns true if the matrix of which *this is the QR decomposition is invertible.

template<typename _MatrixType>
bool Eigen::FullPivHouseholderQR<_MatrixType>::isSurjective() const

Returns true if the matrix of which *this is the QR decomposition represents a surjective linear map; false otherwise.

template<typename _MatrixType>
MatrixType::RealScalar Eigen::FullPivHouseholderQR<_MatrixType>::logAbsDeterminant() const

Returns the natural log of the absolute value of the determinant of the matrix of which *this is the QR decomposition. It has only linear complexity (that is, O(n) where n is the dimension of the square matrix) as the QR decomposition has already been computed.

template<typename _MatrixType>
MatrixQReturnType Eigen::FullPivHouseholderQR<_MatrixType>::matrixQ(void) const

Returns Expression object representing the matrix Q

template<typename _MatrixType>
const MatrixType& Eigen::FullPivHouseholderQR<_MatrixType>::matrixQR() const

Returns a reference to the matrix where the Householder QR decomposition is stored

template<typename _MatrixType>
RealScalar Eigen::FullPivHouseholderQR<_MatrixType>::maxPivot() const

Returns the absolute value of the biggest pivot, i.e. the biggest diagonal coefficient of U.

template<typename _MatrixType>
Index Eigen::FullPivHouseholderQR<_MatrixType>::nonzeroPivots() const

Returns the number of nonzero pivots in the QR decomposition. Here nonzero is meant in the exact sense, not in a fuzzy sense. So that notion isn't really intrinsically interesting, but it is still useful when implementing algorithms.

template<typename _MatrixType>
Index Eigen::FullPivHouseholderQR<_MatrixType>::rank() const

Returns the rank of the matrix of which *this is the QR decomposition.

template<typename _MatrixType>
Index Eigen::FullPivHouseholderQR<_MatrixType>::rows() const

template<typename _MatrixType>
const IntDiagSizeVectorType& Eigen::FullPivHouseholderQR<_MatrixType>::rowsTranspositions() const

Returns a const reference to the vector of indices representing the rows transpositions

template<typename _MatrixType>
FullPivHouseholderQR& Eigen::FullPivHouseholderQR<_MatrixType>::setThreshold(const RealScalar& threshold)

Parameters
threshold The new value to use as the threshold.

Allows to prescribe a threshold to be used by certain methods, such as rank(), who need to determine when pivots are to be considered nonzero. This is not used for the QR decomposition itself.

When it needs to get the threshold value, Eigen calls threshold(). By default, this uses a formula to automatically determine a reasonable threshold. Once you have called the present method setThreshold(const RealScalar&), your value is used instead.

A pivot will be considered nonzero if its absolute value is strictly greater than $ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert $ where maxpivot is the biggest pivot.

If you want to come back to the default behavior, call setThreshold(Default_t)

template<typename _MatrixType>
FullPivHouseholderQR& Eigen::FullPivHouseholderQR<_MatrixType>::setThreshold(Default_t)

Allows to come back to the default behavior, letting Eigen use its default formula for determining the threshold.

You should pass the special object Eigen::Default as parameter here. qr.setThreshold(Eigen::Default);

See the documentation of setThreshold(const RealScalar&).

template<typename _MatrixType> template<typename Rhs>
const Solve<FullPivHouseholderQR, Rhs> Eigen::FullPivHouseholderQR<_MatrixType>::solve(const MatrixBase<Rhs>& b) const

Parameters
b the right-hand-side of the equation to solve.
Returns the exact or least-square solution if the rank is greater or equal to the number of columns of A, and an arbitrary solution otherwise.

This method finds a solution x to the equation Ax=b, where A is the matrix of which *this is the QR decomposition.

This method just tries to find as good a solution as possible. If you want to check whether a solution exists or if it is accurate, just call this function to get a result and then compute the error of this result, or use MatrixBase::isApprox() directly, for instance like this: bool a_solution_exists = (A*result).isApprox(b, precision); This method avoids dividing by zero, so that the non-existence of a solution doesn't by itself mean that you'll get inf or nan values.

If there exists more than one solution, this method will arbitrarily choose one.

Example:

Matrix3f m = Matrix3f::Random();
Matrix3f y = Matrix3f::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the matrix y:" << endl << y << endl;
Matrix3f x;
x = m.fullPivHouseholderQr().solve(y);
assert(y.isApprox(m*x));
cout << "Here is a solution x to the equation mx=y:" << endl << x << endl;

Output:

Here is the matrix m:
  0.68  0.597  -0.33
-0.211  0.823  0.536
 0.566 -0.605 -0.444
Here is the matrix y:
  0.108   -0.27   0.832
-0.0452  0.0268   0.271
  0.258   0.904   0.435
Here is a solution x to the equation mx=y:
 0.609   2.68   1.67
-0.231  -1.57 0.0713
  0.51   3.51   1.05

template<typename _MatrixType>
RealScalar Eigen::FullPivHouseholderQR<_MatrixType>::threshold() const

Returns the threshold that will be used by certain methods such as rank().

See the documentation of setThreshold(const RealScalar&).

template<typename _MatrixType>
static void Eigen::FullPivHouseholderQR<_MatrixType>::check_template_parameters() protected

template<typename _MatrixType>
void Eigen::FullPivHouseholderQR<_MatrixType>::computeInPlace() protected

Variable documentation

template<typename _MatrixType>
PermutationType Eigen::FullPivHouseholderQR<_MatrixType>::m_cols_permutation protected

template<typename _MatrixType>
IntDiagSizeVectorType Eigen::FullPivHouseholderQR<_MatrixType>::m_cols_transpositions protected

template<typename _MatrixType>
Index Eigen::FullPivHouseholderQR<_MatrixType>::m_det_pq protected

template<typename _MatrixType>
HCoeffsType Eigen::FullPivHouseholderQR<_MatrixType>::m_hCoeffs protected

template<typename _MatrixType>
bool Eigen::FullPivHouseholderQR<_MatrixType>::m_isInitialized protected

template<typename _MatrixType>
RealScalar Eigen::FullPivHouseholderQR<_MatrixType>::m_maxpivot protected

template<typename _MatrixType>
Index Eigen::FullPivHouseholderQR<_MatrixType>::m_nonzero_pivots protected

template<typename _MatrixType>
RealScalar Eigen::FullPivHouseholderQR<_MatrixType>::m_precision protected

template<typename _MatrixType>
RealScalar Eigen::FullPivHouseholderQR<_MatrixType>::m_prescribedThreshold protected

template<typename _MatrixType>
MatrixType Eigen::FullPivHouseholderQR<_MatrixType>::m_qr protected

template<typename _MatrixType>
IntDiagSizeVectorType Eigen::FullPivHouseholderQR<_MatrixType>::m_rows_transpositions protected

template<typename _MatrixType>
RowVectorType Eigen::FullPivHouseholderQR<_MatrixType>::m_temp protected

template<typename _MatrixType>
bool Eigen::FullPivHouseholderQR<_MatrixType>::m_usePrescribedThreshold protected