template<typename _MatrixType, typename _OrderingType>
SparseLU class
Sparse supernodal LU factorization for general matrices.
Template parameters | |
---|---|
_MatrixType | The type of the sparse matrix. It must be a column-major SparseMatrix<> |
_OrderingType | The ordering method to use, either AMD, COLAMD or METIS. Default is COLMAD |
Contents
- Reference
This class implements the supernodal LU factorization for general matrices. It uses the main techniques from the sequential SuperLU package (http:/
An important parameter of this class is the ordering method. It is used to reorder the columns (and eventually the rows) of the matrix to reduce the number of new elements that are created during numerical factorization. The cheapest method available is COLAMD. See the OrderingMethods module for the list of built-in and external ordering methods.
Simple example with key steps
VectorXd x(n), b(n); SparseMatrix<double, ColMajor> A; SparseLU<SparseMatrix<scalar, ColMajor>, COLAMDOrdering<Index> > solver; // fill A and b; // Compute the ordering permutation vector from the structural pattern of A solver.analyzePattern(A); // Compute the numerical factorization solver.factorize(A); //Use the factors to solve the linear system x = solver.solve(b);
This class follows the sparse solver concept.
Base classes
-
template<typename Derived>class SparseSolverBase
- A base class for sparse solvers.
Public functions
- auto absDeterminant() -> Scalar
- void analyzePattern(const MatrixType& matrix)
- auto colsPermutation() const -> const PermutationType&
- void compute(const MatrixType& matrix)
- auto determinant() -> Scalar
- void factorize(const MatrixType& matrix)
- auto info() const -> ComputationInfo
- Reports whether previous computation was successful.
- void isSymmetric(bool sym)
- auto lastErrorMessage() const -> std::string
- auto logAbsDeterminant() const -> Scalar
- auto matrixL() const -> SparseLUMatrixLReturnType<SCMatrix>
- auto matrixU() const -> SparseLUMatrixUReturnType<SCMatrix, MappedSparseMatrix<Scalar, ColMajor, StorageIndex>>
- auto rowsPermutation() const -> const PermutationType&
- void setPivotThreshold(const RealScalar& thresh)
- auto signDeterminant() -> Scalar
-
template<typename Rhs>auto solve(const MatrixBase<Rhs>& B) const -> const Solve<SparseLU, Rhs>
Function documentation
template<typename _MatrixType, typename _OrderingType>
Scalar Eigen:: SparseLU<_MatrixType, _OrderingType>:: absDeterminant()
Returns | the absolute value of the determinant of the matrix of which *this is the QR decomposition. |
---|
template<typename _MatrixType, typename _OrderingType>
void Eigen:: SparseLU<_MatrixType, _OrderingType>:: analyzePattern(const MatrixType& matrix)
Compute the column permutation to minimize the fill-in
- Apply this permutation to the input matrix -
- Compute the column elimination tree on the permuted matrix
- Postorder the elimination tree and the column permutation
template<typename _MatrixType, typename _OrderingType>
const PermutationType& Eigen:: SparseLU<_MatrixType, _OrderingType>:: colsPermutation() const
Returns | a reference to the column matrix permutation such that |
---|
template<typename _MatrixType, typename _OrderingType>
void Eigen:: SparseLU<_MatrixType, _OrderingType>:: compute(const MatrixType& matrix)
Compute the symbolic and numeric factorization of the input sparse matrix. The input matrix should be in column-major storage.
template<typename _MatrixType, typename _OrderingType>
Scalar Eigen:: SparseLU<_MatrixType, _OrderingType>:: determinant()
Returns | The determinant of the matrix. |
---|
template<typename _MatrixType, typename _OrderingType>
void Eigen:: SparseLU<_MatrixType, _OrderingType>:: factorize(const MatrixType& matrix)
- Numerical factorization
Interleaved with the symbolic factorization On exit, info is
= 0: successful factorization
0: if info = i, and i is
<= A->ncol: U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations. > A->ncol: number of bytes allocated when memory allocation failure occurred, plus A->ncol. If lwork = -1, it is the estimated amount of space needed, plus A->ncol.
template<typename _MatrixType, typename _OrderingType>
ComputationInfo Eigen:: SparseLU<_MatrixType, _OrderingType>:: info() const
Reports whether previous computation was successful.
Returns | Success if computation was successful, NumericalIssue if the LU factorization reports a problem, zero diagonal for instance InvalidInput if the input matrix is invalid |
---|
template<typename _MatrixType, typename _OrderingType>
void Eigen:: SparseLU<_MatrixType, _OrderingType>:: isSymmetric(bool sym)
Indicate that the pattern of the input matrix is symmetric
template<typename _MatrixType, typename _OrderingType>
std::string Eigen:: SparseLU<_MatrixType, _OrderingType>:: lastErrorMessage() const
Returns | A string describing the type of error |
---|
template<typename _MatrixType, typename _OrderingType>
Scalar Eigen:: SparseLU<_MatrixType, _OrderingType>:: logAbsDeterminant() const
Returns | the natural log of the absolute value of the determinant of the matrix of which **this is the QR decomposition |
---|
template<typename _MatrixType, typename _OrderingType>
SparseLUMatrixLReturnType<SCMatrix> Eigen:: SparseLU<_MatrixType, _OrderingType>:: matrixL() const
Returns | an expression of the matrix L, internally stored as supernodes The only operation available with this expression is the triangular solve y = b; matrixL().solveInPlace(y); |
---|
template<typename _MatrixType, typename _OrderingType>
SparseLUMatrixUReturnType<SCMatrix, MappedSparseMatrix<Scalar, ColMajor, StorageIndex>> Eigen:: SparseLU<_MatrixType, _OrderingType>:: matrixU() const
Returns | an expression of the matrix U, The only operation available with this expression is the triangular solve y = b; matrixU().solveInPlace(y); |
---|
template<typename _MatrixType, typename _OrderingType>
const PermutationType& Eigen:: SparseLU<_MatrixType, _OrderingType>:: rowsPermutation() const
Returns | a reference to the row matrix permutation such that |
---|
template<typename _MatrixType, typename _OrderingType>
void Eigen:: SparseLU<_MatrixType, _OrderingType>:: setPivotThreshold(const RealScalar& thresh)
Set the threshold used for a diagonal entry to be an acceptable pivot.
template<typename _MatrixType, typename _OrderingType>
Scalar Eigen:: SparseLU<_MatrixType, _OrderingType>:: signDeterminant()
Returns | A number representing the sign of the determinant |
---|
template<typename _MatrixType, typename _OrderingType>
template<typename Rhs>
const Solve<SparseLU, Rhs> Eigen:: SparseLU<_MatrixType, _OrderingType>:: solve(const MatrixBase<Rhs>& B) const
Returns | the solution X of using the current decomposition of A. |
---|