template<typename _MatrixType>
Eigen::PartialPivLU class

LU decomposition of a matrix with partial pivoting, and related features.

Template parameters
_MatrixType the type of the matrix of which we are computing the LU decomposition

This class represents a LU decomposition of a square invertible matrix, with partial pivoting: the matrix A is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P is a permutation matrix.

Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices.

The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided by class FullPivLU.

This is not a rank-revealing LU decomposition. Many features are intentionally absent from this class, such as rank computation. If you need these features, use class FullPivLU.

This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses in the general case. On the other hand, it is not suitable to determine whether a given matrix is invertible.

The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP().

This class supports the inplace decomposition mechanism.

Base classes

template<typename Derived>
class SolverBase
A base class for matrix decomposition and solvers.

Public types

enum (anonymous) { MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }
using Base = SolverBase<PartialPivLU>
using MatrixType = _MatrixType
using PermutationType = PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime>
using PlainObject = MatrixType::PlainObject
using TranspositionType = Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime>

Constructors, destructors, conversion operators

PartialPivLU()
Default Constructor.
PartialPivLU(Index size) explicit
Default Constructor with memory preallocation.
template<typename InputType>
PartialPivLU(const EigenBase<InputType>& matrix) explicit
template<typename InputType>
PartialPivLU(EigenBase<InputType>& matrix) explicit

Public functions

auto cols() const -> Index
template<typename InputType>
auto compute(const EigenBase<InputType>& matrix) -> PartialPivLU&
auto determinant() const -> Scalar
auto inverse() const -> const Inverse<PartialPivLU>
auto matrixLU() const -> const MatrixType&
auto permutationP() const -> const PermutationType&
auto rcond() const -> RealScalar
auto reconstructedMatrix() const -> MatrixType
auto rows() const -> Index
template<typename Rhs>
auto solve(const MatrixBase<Rhs>& b) const -> const Solve<PartialPivLU, Rhs>

Protected static functions

static void check_template_parameters()

Protected functions

void compute()

Protected variables

signed char m_det_p
bool m_isInitialized
RealScalar m_l1_norm
MatrixType m_lu
PermutationType m_p
TranspositionType m_rowsTranspositions

Enum documentation

template<typename _MatrixType>
enum Eigen::PartialPivLU<_MatrixType>::(anonymous)

Enumerators
MaxRowsAtCompileTime
MaxColsAtCompileTime

Typedef documentation

template<typename _MatrixType>
typedef SolverBase<PartialPivLU> Eigen::PartialPivLU<_MatrixType>::Base

template<typename _MatrixType>
typedef _MatrixType Eigen::PartialPivLU<_MatrixType>::MatrixType

template<typename _MatrixType>
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> Eigen::PartialPivLU<_MatrixType>::PermutationType

template<typename _MatrixType>
typedef MatrixType::PlainObject Eigen::PartialPivLU<_MatrixType>::PlainObject

template<typename _MatrixType>
typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> Eigen::PartialPivLU<_MatrixType>::TranspositionType

Function documentation

template<typename _MatrixType>
Eigen::PartialPivLU<_MatrixType>::PartialPivLU()

Default Constructor.

The default constructor is useful in cases in which the user intends to perform decompositions via PartialPivLU::compute(const MatrixType&).

template<typename _MatrixType>
Eigen::PartialPivLU<_MatrixType>::PartialPivLU(Index size) explicit

Default Constructor with memory preallocation.

Like the default constructor but with preallocation of the internal data according to the specified problem size.

template<typename _MatrixType> template<typename InputType>
Eigen::PartialPivLU<_MatrixType>::PartialPivLU(const EigenBase<InputType>& matrix) explicit

Parameters
matrix the matrix of which to compute the LU decomposition.

Constructor.

template<typename _MatrixType> template<typename InputType>
Eigen::PartialPivLU<_MatrixType>::PartialPivLU(EigenBase<InputType>& matrix) explicit

Parameters
matrix the matrix of which to compute the LU decomposition.

Constructor for inplace decomposition

template<typename _MatrixType>
Index Eigen::PartialPivLU<_MatrixType>::cols() const

template<typename _MatrixType> template<typename InputType>
PartialPivLU& Eigen::PartialPivLU<_MatrixType>::compute(const EigenBase<InputType>& matrix)

template<typename _MatrixType>
Scalar Eigen::PartialPivLU<_MatrixType>::determinant() const

Returns the determinant of the matrix of which *this is the LU decomposition. It has only linear complexity (that is, O(n) where n is the dimension of the square matrix) as the LU decomposition has already been computed.

template<typename _MatrixType>
const Inverse<PartialPivLU> Eigen::PartialPivLU<_MatrixType>::inverse() const

Returns the inverse of the matrix of which *this is the LU decomposition.

template<typename _MatrixType>
const MatrixType& Eigen::PartialPivLU<_MatrixType>::matrixLU() const

Returns the LU decomposition matrix: the upper-triangular part is U, the unit-lower-triangular part is L (at least for square matrices; in the non-square case, special care is needed, see the documentation of class FullPivLU).

template<typename _MatrixType>
const PermutationType& Eigen::PartialPivLU<_MatrixType>::permutationP() const

Returns the permutation matrix P.

template<typename _MatrixType>
RealScalar Eigen::PartialPivLU<_MatrixType>::rcond() const

Returns an estimate of the reciprocal condition number of the matrix of which *this is the LU decomposition.

template<typename _MatrixType>
MatrixType Eigen::PartialPivLU<_MatrixType>::reconstructedMatrix() const

Returns the matrix represented by the decomposition, i.e., it returns the product: P^{-1} L U. This function is provided for debug purpose.

template<typename _MatrixType>
Index Eigen::PartialPivLU<_MatrixType>::rows() const

template<typename _MatrixType> template<typename Rhs>
const Solve<PartialPivLU, Rhs> Eigen::PartialPivLU<_MatrixType>::solve(const MatrixBase<Rhs>& b) const

Parameters
b the right-hand-side of the equation to solve. Can be a vector or a matrix, the only requirement in order for the equation to make sense is that b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
Returns the solution.

This method returns the solution x to the equation Ax=b, where A is the matrix of which *this is the LU decomposition.

Example:

MatrixXd A = MatrixXd::Random(3,3);
MatrixXd B = MatrixXd::Random(3,2);
cout << "Here is the invertible matrix A:" << endl << A << endl;
cout << "Here is the matrix B:" << endl << B << endl;
MatrixXd X = A.lu().solve(B);
cout << "Here is the (unique) solution X to the equation AX=B:" << endl << X << endl;
cout << "Relative error: " << (A*X-B).norm() / B.norm() << endl;

Output:

Here is the invertible matrix A:
  0.68  0.597  -0.33
-0.211  0.823  0.536
 0.566 -0.605 -0.444
Here is the matrix B:
  0.108   -0.27
-0.0452  0.0268
  0.258   0.904
Here is the (unique) solution X to the equation AX=B:
 0.609   2.68
-0.231  -1.57
  0.51   3.51
Relative error: 3.28e-16

Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution theoretically exists and is unique regardless of b.

template<typename _MatrixType>
static void Eigen::PartialPivLU<_MatrixType>::check_template_parameters() protected

template<typename _MatrixType>
void Eigen::PartialPivLU<_MatrixType>::compute() protected

Variable documentation

template<typename _MatrixType>
signed char Eigen::PartialPivLU<_MatrixType>::m_det_p protected

template<typename _MatrixType>
bool Eigen::PartialPivLU<_MatrixType>::m_isInitialized protected

template<typename _MatrixType>
RealScalar Eigen::PartialPivLU<_MatrixType>::m_l1_norm protected

template<typename _MatrixType>
MatrixType Eigen::PartialPivLU<_MatrixType>::m_lu protected

template<typename _MatrixType>
PermutationType Eigen::PartialPivLU<_MatrixType>::m_p protected

template<typename _MatrixType>
TranspositionType Eigen::PartialPivLU<_MatrixType>::m_rowsTranspositions protected