template<typename Derived>
Eigen::SparseMatrixBase class

Base class of any sparse matrices or sparse expressions.

Template parameters
Derived is the derived type, e.g. a sparse matrix type, or an expression, etc.

This class can be extended with the help of the plugin mechanism described on the page Extending MatrixBase (and other classes) by defining the preprocessor symbol EIGEN_SPARSEMATRIXBASE_PLUGIN.

Base classes

template<typename Derived>
class EigenBase

Derived classes

template<typename Derived>
class SparseCompressedBase
Common base class for sparse [compressed]-{row|column}-storage format.

Public types

enum (anonymous) { RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime, ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime, SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime, internal::traits<Derived>::ColsAtCompileTime>::ret), MaxRowsAtCompileTime = RowsAtCompileTime, MaxColsAtCompileTime = ColsAtCompileTime, MaxSizeAtCompileTime = (internal::size_at_compile_time<MaxRowsAtCompileTime, MaxColsAtCompileTime>::ret), IsVectorAtCompileTime = RowsAtCompileTime == 1 || ColsAtCompileTime == 1, NumDimensions = int(MaxSizeAtCompileTime) == 1 ? 0 : bool(IsVectorAtCompileTime) ? 1 : 2, Flags = internal::traits<Derived>::Flags, IsRowMajor = Flags&RowMajorBit ? 1 : 0, InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime) : int(IsRowMajor) ? int(ColsAtCompileTime) : int(RowsAtCompileTime) }
using AdjointReturnType = internal::conditional<NumTraits<Scalar>::IsComplex, CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, Eigen::Transpose<const Derived>>, Transpose<const Derived>>::type
using ConstTransposeReturnType = internal::add_const<Transpose<const Derived>>::type
using CwiseAbs2ReturnType = CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const Derived>
using CwiseAbsReturnType = CwiseUnaryOp<internal::scalar_abs_op<Scalar>, const Derived>
using CwiseInverseReturnType = CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const Derived>
using CwiseScalarEqualReturnType = CwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_EQ>, const Derived, const ConstantReturnType>
using CwiseSignReturnType = CwiseUnaryOp<internal::scalar_sign_op<Scalar>, const Derived>
using CwiseSqrtReturnType = CwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const Derived>
using IndexVector = Matrix<StorageIndex, Dynamic, 1>
using PacketReturnType = internal::add_const_on_value_type_if_arithmetic<typename internal::packet_traits<Scalar>::type>::type
using PacketScalar = internal::packet_traits<Scalar>::type
using PlainObject = SparseMatrix<Scalar, Flags&RowMajorBit ? RowMajor :ColMajor, StorageIndex>
using Scalar = internal::traits<Derived>::Scalar
using ScalarVector = Matrix<Scalar, Dynamic, 1>
using StorageBaseType = SparseMatrixBase
using StorageIndex = internal::traits<Derived>::StorageIndex
using StorageKind = internal::traits<Derived>::StorageKind
using TransposeReturnType = Transpose<Derived>
using value_type = Scalar

Constructors, destructors, conversion operators

SparseMatrixBase()

Public functions

auto adjoint() const -> const AdjointReturnType
template<typename CustomBinaryOp, typename OtherDerived>
auto binaryExpr(const Eigen::SparseMatrixBase<OtherDerived>& other, const CustomBinaryOp& func = CustomBinaryOp()) const -> const CwiseBinaryOp<CustomBinaryOp, const Derived, const OtherDerived>
template<typename NRowsType, typename NColsType>
auto block(Index startRow, Index startCol, NRowsType blockRows, NColsType blockCols) -> FixedBlockXpr<...,...>::Type
template<typename NRowsType, typename NColsType>
auto block(Index startRow, Index startCol, NRowsType blockRows, NColsType blockCols) const -> const ConstFixedBlockXpr<...,...>::Type
This is the const version of block(Index,Index,NRowsType,NColsType)
template<int NRows, int NCols>
auto block(Index startRow, Index startCol) -> FixedBlockXpr<NRows, NCols>::Type
template<int NRows, int NCols>
auto block(Index startRow, Index startCol) const -> const ConstFixedBlockXpr<NRows, NCols>::Type
This is the const version of block<>(Index, Index). */.
template<int NRows, int NCols>
auto block(Index startRow, Index startCol, Index blockRows, Index blockCols) -> FixedBlockXpr<NRows, NCols>::Type
template<int NRows, int NCols>
auto block(Index startRow, Index startCol, Index blockRows, Index blockCols) const -> const ConstFixedBlockXpr<NRows, NCols>::Type
This is the const version of block<>(Index, Index, Index, Index).
auto blueNorm() const -> RealScalar
template<typename NRowsType, typename NColsType>
auto bottomLeftCorner(NRowsType cRows, NColsType cCols) -> FixedBlockXpr<...,...>::Type
template<typename NRowsType, typename NColsType>
auto bottomLeftCorner(NRowsType cRows, NColsType cCols) const -> ConstFixedBlockXpr<...,...>::Type
This is the const version of bottomLeftCorner(NRowsType, NColsType).
template<int CRows, int CCols>
auto bottomLeftCorner() -> FixedBlockXpr<CRows, CCols>::Type
template<int CRows, int CCols>
auto bottomLeftCorner() const -> const ConstFixedBlockXpr<CRows, CCols>::Type
This is the const version of bottomLeftCorner<int, int>().
template<int CRows, int CCols>
auto bottomLeftCorner(Index cRows, Index cCols) -> FixedBlockXpr<CRows, CCols>::Type
template<int CRows, int CCols>
auto bottomLeftCorner(Index cRows, Index cCols) const -> const ConstFixedBlockXpr<CRows, CCols>::Type
This is the const version of bottomLeftCorner<int, int>(Index, Index).
template<typename NRowsType, typename NColsType>
auto bottomRightCorner(NRowsType cRows, NColsType cCols) -> FixedBlockXpr<...,...>::Type
template<typename NRowsType, typename NColsType>
auto bottomRightCorner(NRowsType cRows, NColsType cCols) const -> const ConstFixedBlockXpr<...,...>::Type
This is the const version of bottomRightCorner(NRowsType, NColsType).
template<int CRows, int CCols>
auto bottomRightCorner() -> FixedBlockXpr<CRows, CCols>::Type
template<int CRows, int CCols>
auto bottomRightCorner() const -> const ConstFixedBlockXpr<CRows, CCols>::Type
This is the const version of bottomRightCorner<int, int>().
template<int CRows, int CCols>
auto bottomRightCorner(Index cRows, Index cCols) -> FixedBlockXpr<CRows, CCols>::Type
template<int CRows, int CCols>
auto bottomRightCorner(Index cRows, Index cCols) const -> const ConstFixedBlockXpr<CRows, CCols>::Type
This is the const version of bottomRightCorner<int, int>(Index, Index).
template<typename NRowsType>
auto bottomRows(NRowsType n) -> NRowsBlockXpr<...>::Type
template<typename NRowsType>
auto bottomRows(NRowsType n) const -> const ConstNRowsBlockXpr<...>::Type
This is the const version of bottomRows(NRowsType).
template<int N>
auto bottomRows(Index n = N) -> NRowsBlockXpr<N>::Type
template<int N>
auto bottomRows(Index n = N) const -> ConstNRowsBlockXpr<N>::Type
This is the const version of bottomRows<int>().
template<typename NewType>
auto cast() const -> CastXpr<NewType>::Type
auto col(Index i) -> ColXpr
auto col(Index i) const -> ConstColXpr
This is the const version of col().
auto cols() const -> Index
auto conjugate() const -> ConjugateReturnType
template<bool Cond>
auto conjugateIf() const -> internal::conditional<Cond, ConjugateReturnType, const Derived&>::type
auto cwiseAbs() const -> const CwiseAbsReturnType
auto cwiseAbs2() const -> const CwiseAbs2ReturnType
template<typename OtherDerived>
auto cwiseEqual(const Eigen::SparseMatrixBase<OtherDerived>& other) const -> const CwiseBinaryOp<std::equal_to<Scalar>, const Derived, const OtherDerived>
auto cwiseEqual(const Scalar& s) const -> const CwiseScalarEqualReturnType
auto cwiseInverse() const -> const CwiseInverseReturnType
template<typename OtherDerived>
auto cwiseMax(const Eigen::SparseMatrixBase<OtherDerived>& other) const -> const CwiseBinaryOp<internal::scalar_max_op<Scalar, Scalar>, const Derived, const OtherDerived>
auto cwiseMax(const Scalar& other) const -> const CwiseBinaryOp<internal::scalar_max_op<Scalar, Scalar>, const Derived, const ConstantReturnType>
template<typename OtherDerived>
auto cwiseMin(const Eigen::SparseMatrixBase<OtherDerived>& other) const -> const CwiseBinaryOp<internal::scalar_min_op<Scalar, Scalar>, const Derived, const OtherDerived>
auto cwiseMin(const Scalar& other) const -> const CwiseBinaryOp<internal::scalar_min_op<Scalar, Scalar>, const Derived, const ConstantReturnType>
template<typename OtherDerived>
auto cwiseNotEqual(const Eigen::SparseMatrixBase<OtherDerived>& other) const -> const CwiseBinaryOp<std::not_equal_to<Scalar>, const Derived, const OtherDerived>
template<typename OtherDerived>
auto cwiseProduct(const Eigen::SparseMatrixBase<OtherDerived>& other) const -> const CwiseBinaryOp<internal::scalar_product_op<Derived ::Scalar, OtherDerived ::Scalar>, const Derived, const OtherDerived>
template<typename OtherDerived>
auto cwiseProduct(const MatrixBase<OtherDerived>& other) const -> const CwiseProductDenseReturnType<OtherDerived>::Type
template<typename OtherDerived>
auto cwiseProduct(const MatrixBase<OtherDerived>& other) const -> const SparseMatrixBase<Derived>::template CwiseProductDenseReturnType<OtherDerived>::Type
template<typename OtherDerived>
auto cwiseQuotient(const Eigen::SparseMatrixBase<OtherDerived>& other) const -> const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived>
auto cwiseSign() const -> const CwiseSignReturnType
auto cwiseSqrt() const -> const CwiseSqrtReturnType
template<typename OtherDerived>
auto dot(const MatrixBase<OtherDerived>& other) const -> internal::traits<Derived>::Scalar
template<typename OtherDerived>
auto dot(const SparseMatrixBase<OtherDerived>& other) const -> internal::traits<Derived>::Scalar
template<typename OtherDerived>
auto dot(const MatrixBase<OtherDerived>& other) const -> Scalar
template<typename OtherDerived>
auto dot(const SparseMatrixBase<OtherDerived>& other) const -> Scalar
auto eval() const -> const internal::eval<Derived>::type
template<typename NType>
auto head(NType n) -> FixedSegmentReturnType<...>::Type
template<typename NType>
auto head(NType n) const -> const ConstFixedSegmentReturnType<...>::Type
This is the const version of head(NType).
template<int N>
auto head(Index n = N) -> FixedSegmentReturnType<N>::Type
template<int N>
auto head(Index n = N) const -> ConstFixedSegmentReturnType<N>::Type
This is the const version of head<int>().
auto imag() const -> const ImagReturnType
auto imag() -> NonConstImagReturnType
auto innerSize() const -> Index
auto innerVector(Index outer) -> InnerVectorReturnType
auto innerVector(Index outer) const -> const ConstInnerVectorReturnType
auto innerVectors(Index outerStart, Index outerSize) -> InnerVectorsReturnType
auto innerVectors(Index outerStart, Index outerSize) const -> const ConstInnerVectorsReturnType
template<typename OtherDerived>
auto isApprox(const SparseMatrixBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const -> bool
template<typename OtherDerived>
auto isApprox(const MatrixBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const -> bool
auto isRValue() const -> bool
auto isVector() const -> bool
template<typename NColsType>
auto leftCols(NColsType n) -> NColsBlockXpr<...>::Type
template<typename NColsType>
auto leftCols(NColsType n) const -> const ConstNColsBlockXpr<...>::Type
This is the const version of leftCols(NColsType).
template<int N>
auto leftCols(Index n = N) -> NColsBlockXpr<N>::Type
template<int N>
auto leftCols(Index n = N) const -> ConstNColsBlockXpr<N>::Type
This is the const version of leftCols<int>().
auto markAsRValue() -> Derived&
template<typename NColsType>
auto middleCols(Index startCol, NColsType numCols) -> NColsBlockXpr<...>::Type
template<typename NColsType>
auto middleCols(Index startCol, NColsType numCols) const -> const ConstNColsBlockXpr<...>::Type
This is the const version of middleCols(Index,NColsType).
template<int N>
auto middleCols(Index startCol, Index n = N) -> NColsBlockXpr<N>::Type
template<int N>
auto middleCols(Index startCol, Index n = N) const -> ConstNColsBlockXpr<N>::Type
This is the const version of middleCols<int>().
template<typename NRowsType>
auto middleRows(Index startRow, NRowsType n) -> NRowsBlockXpr<...>::Type
template<typename NRowsType>
auto middleRows(Index startRow, NRowsType n) const -> const ConstNRowsBlockXpr<...>::Type
This is the const version of middleRows(Index,NRowsType).
template<int N>
auto middleRows(Index startRow, Index n = N) -> NRowsBlockXpr<N>::Type
template<int N>
auto middleRows(Index startRow, Index n = N) const -> ConstNRowsBlockXpr<N>::Type
This is the const version of middleRows<int>().
auto norm() const -> RealScalar
template<typename OtherDerived>
auto operator&&(const Eigen::SparseMatrixBase<OtherDerived>& other) const -> const CwiseBinaryOp<internal::scalar_boolean_and_op, const Derived, const OtherDerived>
template<typename T>
auto operator*(const T& scalar) const -> const CwiseBinaryOp<internal::scalar_product_op<Scalar, T>, Derived, Constant<T>>
template<typename OtherDerived>
auto operator*(const DiagonalBase<OtherDerived>& other) const -> const Product<Derived, OtherDerived>
template<typename OtherDerived>
auto operator*(const SparseMatrixBase<OtherDerived>& other) const -> const Product<Derived, OtherDerived, AliasFreeProduct>
template<typename OtherDerived>
auto operator*(const MatrixBase<OtherDerived>& other) const -> const Product<Derived, OtherDerived>
auto operator*=(const Scalar& other) -> Derived&
template<typename OtherDerived>
auto operator*=(const SparseMatrixBase<OtherDerived>& other) -> Derived&
template<typename OtherDerived>
auto operator+(const Eigen::SparseMatrixBase<OtherDerived>& other) const -> const CwiseBinaryOp<sum<Scalar>, const Derived, const OtherDerived>
template<typename OtherDerived>
auto operator+=(const SparseMatrixBase<OtherDerived>& other) -> Derived&
template<typename OtherDerived>
auto operator+=(const DiagonalBase<OtherDerived>& other) -> Derived&
template<typename OtherDerived>
auto operator+=(const EigenBase<OtherDerived>& other) -> Derived&
template<typename OtherDerived>
auto operator-(const Eigen::SparseMatrixBase<OtherDerived>& other) const -> const CwiseBinaryOp<difference<Scalar>, const Derived, const OtherDerived>
auto operator-() const -> const NegativeReturnType
template<typename OtherDerived>
auto operator-=(const SparseMatrixBase<OtherDerived>& other) -> Derived&
template<typename OtherDerived>
auto operator-=(const DiagonalBase<OtherDerived>& other) -> Derived&
template<typename OtherDerived>
auto operator-=(const EigenBase<OtherDerived>& other) -> Derived&
template<typename T>
auto operator/(const T& scalar) const -> const CwiseBinaryOp<internal::scalar_quotient_op<Scalar, T>, Derived, Constant<T>>
auto operator/=(const Scalar& other) -> Derived&
template<typename OtherDerived>
auto operator=(const EigenBase<OtherDerived>& other) -> Derived&
template<typename OtherDerived>
auto operator=(const ReturnByValue<OtherDerived>& other) -> Derived&
template<typename OtherDerived>
auto operator=(const SparseMatrixBase<OtherDerived>& other) -> Derived&
auto operator=(const Derived& other) -> Derived&
template<typename OtherDerived>
auto operator||(const Eigen::SparseMatrixBase<OtherDerived>& other) const -> const CwiseBinaryOp<internal::scalar_boolean_or_op, const Derived, const OtherDerived>
auto outerSize() const -> Index
auto pruned(const Scalar& reference = Scalar(0), const RealScalar& epsilon = NumTraits<Scalar>::dummy_precision()) const -> const SparseView<Derived>
auto real() const -> RealReturnType
auto real() -> NonConstRealReturnType
template<typename NColsType>
auto rightCols(NColsType n) -> NColsBlockXpr<...>::Type
template<typename NColsType>
auto rightCols(NColsType n) const -> const ConstNColsBlockXpr<...>::Type
This is the const version of rightCols(NColsType).
template<int N>
auto rightCols(Index n = N) -> NColsBlockXpr<N>::Type
template<int N>
auto rightCols(Index n = N) const -> ConstNColsBlockXpr<N>::Type
This is the const version of rightCols<int>().
auto row(Index i) -> RowXpr
auto row(Index i) const -> ConstRowXpr
This is the const version of row(). */.
auto rows() const -> Index
template<typename NType>
auto segment(Index start, NType n) -> FixedSegmentReturnType<...>::Type
template<typename NType>
auto segment(Index start, NType n) const -> const ConstFixedSegmentReturnType<...>::Type
This is the const version of segment(Index,NType).
template<int N>
auto segment(Index start, Index n = N) -> FixedSegmentReturnType<N>::Type
template<int N>
auto segment(Index start, Index n = N) const -> ConstFixedSegmentReturnType<N>::Type
This is the const version of segment<int>(Index).
template<unsigned int UpLo>
auto selfadjointView() const -> SparseMatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type
template<unsigned int UpLo>
auto selfadjointView() -> SparseMatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type
template<unsigned int UpLo>
auto selfadjointView() const -> ConstSelfAdjointViewReturnType<UpLo>::Type
template<unsigned int UpLo>
auto selfadjointView() -> SelfAdjointViewReturnType<UpLo>::Type
auto size() const -> Index
auto squaredNorm() const -> RealScalar
template<DirectionType Direction>
auto subVector(Index i) -> internal::conditional<Direction==Vertical, ColXpr, RowXpr>::type
template<DirectionType Direction>
auto subVector(Index i) const -> internal::conditional<Direction==Vertical, ConstColXpr, ConstRowXpr>::type
template<DirectionType Direction>
auto subVectors() const -> Index
auto sum() const -> Scalar
template<typename NType>
auto tail(NType n) -> FixedSegmentReturnType<...>::Type
template<typename NType>
auto tail(NType n) const -> const ConstFixedSegmentReturnType<...>::Type
This is the const version of tail(Index).
template<int N>
auto tail(Index n = N) -> FixedSegmentReturnType<N>::Type
template<int N>
auto tail(Index n = N) const -> ConstFixedSegmentReturnType<N>::Type
This is the const version of tail<int>.
auto toDense() const -> DenseMatrixType
template<typename NRowsType, typename NColsType>
auto topLeftCorner(NRowsType cRows, NColsType cCols) -> FixedBlockXpr<...,...>::Type
template<typename NRowsType, typename NColsType>
auto topLeftCorner(NRowsType cRows, NColsType cCols) const -> const ConstFixedBlockXpr<...,...>::Type
This is the const version of topLeftCorner(Index, Index).
template<int CRows, int CCols>
auto topLeftCorner() -> FixedBlockXpr<CRows, CCols>::Type
template<int CRows, int CCols>
auto topLeftCorner() const -> const ConstFixedBlockXpr<CRows, CCols>::Type
This is the const version of topLeftCorner<int, int>().
template<int CRows, int CCols>
auto topLeftCorner(Index cRows, Index cCols) -> FixedBlockXpr<CRows, CCols>::Type
template<int CRows, int CCols>
auto topLeftCorner(Index cRows, Index cCols) const -> const ConstFixedBlockXpr<CRows, CCols>::Type
This is the const version of topLeftCorner<int, int>(Index, Index).
template<typename NRowsType, typename NColsType>
auto topRightCorner(NRowsType cRows, NColsType cCols) -> FixedBlockXpr<...,...>::Type
template<typename NRowsType, typename NColsType>
auto topRightCorner(NRowsType cRows, NColsType cCols) const -> const ConstFixedBlockXpr<...,...>::Type
This is the const version of topRightCorner(NRowsType, NColsType).
template<int CRows, int CCols>
auto topRightCorner() -> FixedBlockXpr<CRows, CCols>::Type
template<int CRows, int CCols>
auto topRightCorner() const -> const ConstFixedBlockXpr<CRows, CCols>::Type
This is the const version of topRightCorner<int, int>().
template<int CRows, int CCols>
auto topRightCorner(Index cRows, Index cCols) -> FixedBlockXpr<CRows, CCols>::Type
template<int CRows, int CCols>
auto topRightCorner(Index cRows, Index cCols) const -> const ConstFixedBlockXpr<CRows, CCols>::Type
This is the const version of topRightCorner<int, int>(Index, Index).
template<typename NRowsType>
auto topRows(NRowsType n) -> NRowsBlockXpr<...>::Type
template<typename NRowsType>
auto topRows(NRowsType n) const -> const ConstNRowsBlockXpr<...>::Type
This is the const version of topRows(NRowsType).
template<int N>
auto topRows(Index n = N) -> NRowsBlockXpr<N>::Type
template<int N>
auto topRows(Index n = N) const -> ConstNRowsBlockXpr<N>::Type
This is the const version of topRows<int>().
auto transpose() -> TransposeReturnType
auto transpose() const -> const ConstTransposeReturnType
template<int Mode>
auto triangularView() const -> const TriangularView<const Derived, Mode>
auto twistedBy(const PermutationMatrix<Dynamic, Dynamic, StorageIndex>& perm) const -> SparseSymmetricPermutationProduct<Derived, Upper|Lower>
template<typename CustomUnaryOp>
auto unaryExpr(const CustomUnaryOp& func = CustomUnaryOp()) const -> const CwiseUnaryOp<CustomUnaryOp, const Derived>
Apply a unary operator coefficient-wise.
template<typename CustomViewOp>
auto unaryViewExpr(const CustomViewOp& func = CustomViewOp()) const -> const CwiseUnaryView<CustomViewOp, const Derived>

Protected static functions

static auto convert_index(const Index idx) -> StorageIndex

Protected functions

template<typename OtherDerived>
auto assign(const OtherDerived& other) -> Derived&
template<typename OtherDerived>
void assignGeneric(const OtherDerived& other)

Protected variables

bool m_isRValue

Friends

template<typename T>
auto operator*(const T& scalar, const StorageBaseType& expr) -> const CwiseBinaryOp<internal::scalar_product_op<T, Scalar>, Constant<T>, Derived>
template<typename OtherDerived>
auto operator*(const DiagonalBase<OtherDerived>& lhs, const SparseMatrixBase& rhs) -> const Product<OtherDerived, Derived>
template<typename OtherDerived>
auto operator*(const MatrixBase<OtherDerived>& lhs, const SparseMatrixBase& rhs) -> const Product<OtherDerived, Derived>
auto operator<<(std::ostream& s, const SparseMatrixBase& m) -> std::ostream&

Enum documentation

template<typename Derived>
enum Eigen::SparseMatrixBase<Derived>::(anonymous)

Enumerators
RowsAtCompileTime

The number of rows at compile-time. This is just a copy of the value provided by the Derived type. If a value is not known at compile-time, it is set to the Dynamic constant.

ColsAtCompileTime

The number of columns at compile-time. This is just a copy of the value provided by the Derived type. If a value is not known at compile-time, it is set to the Dynamic constant.

SizeAtCompileTime

This is equal to the number of coefficients, i.e. the number of rows times the number of columns, or to Dynamic if this is not known at compile-time.

MaxRowsAtCompileTime
MaxColsAtCompileTime
MaxSizeAtCompileTime
IsVectorAtCompileTime

This is set to true if either the number of rows or the number of columns is known at compile-time to be equal to 1. Indeed, in that case, we are dealing with a column-vector (if there is only one column) or with a row-vector (if there is only one row).

NumDimensions

This value is equal to Tensor::NumDimensions, i.e. 0 for scalars, 1 for vectors, and 2 for matrices.

Flags

This stores expression Flags flags which may or may not be inherited by new expressions constructed from this one. See the list of flags.

IsRowMajor
InnerSizeAtCompileTime

Typedef documentation

template<typename Derived>
typedef internal::conditional<NumTraits<Scalar>::IsComplex, CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, Eigen::Transpose<const Derived>>, Transpose<const Derived>>::type Eigen::SparseMatrixBase<Derived>::AdjointReturnType

template<typename Derived>
typedef internal::add_const<Transpose<const Derived>>::type Eigen::SparseMatrixBase<Derived>::ConstTransposeReturnType

template<typename Derived>
typedef CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const Derived> Eigen::SparseMatrixBase<Derived>::CwiseAbs2ReturnType

template<typename Derived>
typedef CwiseUnaryOp<internal::scalar_abs_op<Scalar>, const Derived> Eigen::SparseMatrixBase<Derived>::CwiseAbsReturnType

template<typename Derived>
typedef CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const Derived> Eigen::SparseMatrixBase<Derived>::CwiseInverseReturnType

template<typename Derived>
typedef CwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_EQ>, const Derived, const ConstantReturnType> Eigen::SparseMatrixBase<Derived>::CwiseScalarEqualReturnType

template<typename Derived>
typedef CwiseUnaryOp<internal::scalar_sign_op<Scalar>, const Derived> Eigen::SparseMatrixBase<Derived>::CwiseSignReturnType

template<typename Derived>
typedef CwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const Derived> Eigen::SparseMatrixBase<Derived>::CwiseSqrtReturnType

template<typename Derived>
typedef Matrix<StorageIndex, Dynamic, 1> Eigen::SparseMatrixBase<Derived>::IndexVector

template<typename Derived>
typedef internal::add_const_on_value_type_if_arithmetic<typename internal::packet_traits<Scalar>::type>::type Eigen::SparseMatrixBase<Derived>::PacketReturnType

template<typename Derived>
typedef internal::packet_traits<Scalar>::type Eigen::SparseMatrixBase<Derived>::PacketScalar

template<typename Derived>
typedef SparseMatrix<Scalar, Flags&RowMajorBit ? RowMajor :ColMajor, StorageIndex> Eigen::SparseMatrixBase<Derived>::PlainObject

template<typename Derived>
typedef internal::traits<Derived>::Scalar Eigen::SparseMatrixBase<Derived>::Scalar

template<typename Derived>
typedef Matrix<Scalar, Dynamic, 1> Eigen::SparseMatrixBase<Derived>::ScalarVector

template<typename Derived>
typedef SparseMatrixBase Eigen::SparseMatrixBase<Derived>::StorageBaseType

template<typename Derived>
typedef internal::traits<Derived>::StorageIndex Eigen::SparseMatrixBase<Derived>::StorageIndex

The integer type used to store indices within a SparseMatrix. For a SparseMatrix<Scalar,Options,IndexType> it an alias of the third template parameter IndexType.

template<typename Derived>
typedef internal::traits<Derived>::StorageKind Eigen::SparseMatrixBase<Derived>::StorageKind

template<typename Derived>
typedef Transpose<Derived> Eigen::SparseMatrixBase<Derived>::TransposeReturnType

template<typename Derived>
typedef Scalar Eigen::SparseMatrixBase<Derived>::value_type

The numeric type of the expression' coefficients, e.g. float, double, int or std::complex<float>, etc.

It is an alias for the Scalar type

Function documentation

template<typename Derived>
Eigen::SparseMatrixBase<Derived>::SparseMatrixBase()

template<typename Derived>
const AdjointReturnType Eigen::SparseMatrixBase<Derived>::adjoint() const

template<typename Derived> template<typename CustomBinaryOp, typename OtherDerived>
const CwiseBinaryOp<CustomBinaryOp, const Derived, const OtherDerived> Eigen::SparseMatrixBase<Derived>::binaryExpr(const Eigen::SparseMatrixBase<OtherDerived>& other, const CustomBinaryOp& func = CustomBinaryOp()) const

Returns an expression of a custom coefficient-wise operator func of *this and other

The template parameter CustomBinaryOp is the type of the functor of the custom operator (see class CwiseBinaryOp for an example)

Here is an example illustrating the use of custom functors:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;

// define a custom template binary functor
template<typename Scalar> struct MakeComplexOp {
  EIGEN_EMPTY_STRUCT_CTOR(MakeComplexOp)
  typedef complex<Scalar> result_type;
  complex<Scalar> operator()(const Scalar& a, const Scalar& b) const { return complex<Scalar>(a,b); }
};

int main(int, char**)
{
  Matrix4d m1 = Matrix4d::Random(), m2 = Matrix4d::Random();
  cout << m1.binaryExpr(m2, MakeComplexOp<double>()) << endl;
  return 0;
}

Output:

   (0.68,0.271)  (0.823,-0.967) (-0.444,-0.687)   (-0.27,0.998)
 (-0.211,0.435) (-0.605,-0.514)  (0.108,-0.198) (0.0268,-0.563)
 (0.566,-0.717)  (-0.33,-0.726) (-0.0452,-0.74)  (0.904,0.0259)
  (0.597,0.214)   (0.536,0.608)  (0.258,-0.782)   (0.832,0.678)

template<typename Derived> template<typename NRowsType, typename NColsType>
FixedBlockXpr<...,...>::Type Eigen::SparseMatrixBase<Derived>::block(Index startRow, Index startCol, NRowsType blockRows, NColsType blockCols)

Template parameters
NRowsType the type of the value handling the number of rows in the block, typically Index.
NColsType the type of the value handling the number of columns in the block, typically Index.
Parameters
startRow the first row in the block
startCol the first column in the block
blockRows number of rows in the block, specified at either run-time or compile-time
blockCols number of columns in the block, specified at either run-time or compile-time
Returns an expression of a block in *this with either dynamic or fixed sizes.

Example using runtime (aka dynamic) sizes:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.block(1, 1, 2, 2):" << endl << m.block(1, 1, 2, 2) << endl;
m.block(1, 1, 2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.block(1, 1, 2, 2):
-6  1
-3  0
Now the matrix m is:
 7  9 -5 -3
-2  0  0  0
 6  0  0  9
 6  6  3  9

New in Eigen 3.4.:

The number of rows blockRows and columns blockCols can also be specified at compile-time by passing Eigen::fix<N>, or Eigen::fix<N>(n) as arguments. In the later case, n plays the role of a runtime fallback value in case N equals Eigen::Dynamic. Here is an example with a fixed number of rows NRows and dynamic number of columns cols: mat.block(i,j,fix<NRows>,cols)

This function thus fully covers the features offered by the following overloads block<NRows,NCols>(Index, Index), and block<NRows,NCols>(Index, Index, Index, Index) that are thus obsolete. Indeed, this generic version avoids redundancy, it preserves the argument order, and prevents the need to rely on the template keyword in templated code.

but with less redundancy and more consistency as it does not modify the argument order and seamlessly enable hybrid fixed/dynamic sizes.

template<typename Derived> template<typename NRowsType, typename NColsType>
const ConstFixedBlockXpr<...,...>::Type Eigen::SparseMatrixBase<Derived>::block(Index startRow, Index startCol, NRowsType blockRows, NColsType blockCols) const

This is the const version of block(Index,Index,NRowsType,NColsType)

template<typename Derived> template<int NRows, int NCols>
FixedBlockXpr<NRows, NCols>::Type Eigen::SparseMatrixBase<Derived>::block(Index startRow, Index startCol)

Parameters
startRow the first row in the block
startCol the first column in the block
Returns a fixed-size expression of a block of *this.

The template parameters NRows and NCols are the number of rows and columns in the block.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.block<2,2>(1,1):" << endl << m.block<2,2>(1,1) << endl;
m.block<2,2>(1,1).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.block<2,2>(1,1):
-6  1
-3  0
Now the matrix m is:
 7  9 -5 -3
-2  0  0  0
 6  0  0  9
 6  6  3  9

template<typename Derived> template<int NRows, int NCols>
const ConstFixedBlockXpr<NRows, NCols>::Type Eigen::SparseMatrixBase<Derived>::block(Index startRow, Index startCol) const

This is the const version of block<>(Index, Index). */.

template<typename Derived> template<int NRows, int NCols>
FixedBlockXpr<NRows, NCols>::Type Eigen::SparseMatrixBase<Derived>::block(Index startRow, Index startCol, Index blockRows, Index blockCols)

Template parameters
NRows number of rows in block as specified at compile-time
NCols number of columns in block as specified at compile-time
Parameters
startRow the first row in the block
startCol the first column in the block
blockRows number of rows in block as specified at run-time
blockCols number of columns in block as specified at run-time
Returns an expression of a block of *this.

This function is mainly useful for blocks where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, blockRows should equal NRows unless NRows is Dynamic, and the same for the number of columns.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the block:" << endl << m.block<2, Dynamic>(1, 1, 2, 3) << endl;
m.block<2, Dynamic>(1, 1, 2, 3).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is the block:
-6  1  0
-3  0  9
Now the matrix m is:
 7  9 -5 -3
-2  0  0  0
 6  0  0  0
 6  6  3  9

template<typename Derived> template<int NRows, int NCols>
const ConstFixedBlockXpr<NRows, NCols>::Type Eigen::SparseMatrixBase<Derived>::block(Index startRow, Index startCol, Index blockRows, Index blockCols) const

This is the const version of block<>(Index, Index, Index, Index).

template<typename Derived>
RealScalar Eigen::SparseMatrixBase<Derived>::blueNorm() const

template<typename Derived> template<typename NRowsType, typename NColsType>
FixedBlockXpr<...,...>::Type Eigen::SparseMatrixBase<Derived>::bottomLeftCorner(NRowsType cRows, NColsType cCols)

Template parameters
NRowsType the type of the value handling the number of rows in the block, typically Index.
NColsType the type of the value handling the number of columns in the block, typically Index.
Parameters
cRows the number of rows in the corner
cCols the number of columns in the corner
Returns an expression of a bottom-left corner of *this with either dynamic or fixed sizes.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomLeftCorner(2, 2):" << endl;
cout << m.bottomLeftCorner(2, 2) << endl;
m.bottomLeftCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomLeftCorner(2, 2):
 6 -3
 6  6
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  9
 0  0  3  9

The number of rows blockRows and columns blockCols can also be specified at compile-time by passing Eigen::fix<N>, or Eigen::fix<N>(n) as arguments. See block() for the details.

template<typename Derived> template<typename NRowsType, typename NColsType>
ConstFixedBlockXpr<...,...>::Type Eigen::SparseMatrixBase<Derived>::bottomLeftCorner(NRowsType cRows, NColsType cCols) const

This is the const version of bottomLeftCorner(NRowsType, NColsType).

template<typename Derived> template<int CRows, int CCols>
FixedBlockXpr<CRows, CCols>::Type Eigen::SparseMatrixBase<Derived>::bottomLeftCorner()

Returns an expression of a fixed-size bottom-left corner of *this.

The template parameters CRows and CCols are the number of rows and columns in the corner.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomLeftCorner<2,2>():" << endl;
cout << m.bottomLeftCorner<2,2>() << endl;
m.bottomLeftCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomLeftCorner<2,2>():
 6 -3
 6  6
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  9
 0  0  3  9

template<typename Derived> template<int CRows, int CCols>
const ConstFixedBlockXpr<CRows, CCols>::Type Eigen::SparseMatrixBase<Derived>::bottomLeftCorner() const

This is the const version of bottomLeftCorner<int, int>().

template<typename Derived> template<int CRows, int CCols>
FixedBlockXpr<CRows, CCols>::Type Eigen::SparseMatrixBase<Derived>::bottomLeftCorner(Index cRows, Index cCols)

Template parameters
CRows number of rows in corner as specified at compile-time
CCols number of columns in corner as specified at compile-time
Parameters
cRows number of rows in corner as specified at run-time
cCols number of columns in corner as specified at run-time
Returns an expression of a bottom-left corner of *this.

This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomLeftCorner<2,Dynamic>(2,2):" << endl;
cout << m.bottomLeftCorner<2,Dynamic>(2,2) << endl;
m.bottomLeftCorner<2,Dynamic>(2,2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomLeftCorner<2,Dynamic>(2,2):
 6 -3
 6  6
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  9
 0  0  3  9

template<typename Derived> template<int CRows, int CCols>
const ConstFixedBlockXpr<CRows, CCols>::Type Eigen::SparseMatrixBase<Derived>::bottomLeftCorner(Index cRows, Index cCols) const

This is the const version of bottomLeftCorner<int, int>(Index, Index).

template<typename Derived> template<typename NRowsType, typename NColsType>
FixedBlockXpr<...,...>::Type Eigen::SparseMatrixBase<Derived>::bottomRightCorner(NRowsType cRows, NColsType cCols)

Template parameters
NRowsType the type of the value handling the number of rows in the block, typically Index.
NColsType the type of the value handling the number of columns in the block, typically Index.
Parameters
cRows the number of rows in the corner
cCols the number of columns in the corner
Returns an expression of a bottom-right corner of *this with either dynamic or fixed sizes.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomRightCorner(2, 2):" << endl;
cout << m.bottomRightCorner(2, 2) << endl;
m.bottomRightCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomRightCorner(2, 2):
0 9
3 9
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  0
 6  6  0  0

The number of rows blockRows and columns blockCols can also be specified at compile-time by passing Eigen::fix<N>, or Eigen::fix<N>(n) as arguments. See block() for the details.

template<typename Derived> template<typename NRowsType, typename NColsType>
const ConstFixedBlockXpr<...,...>::Type Eigen::SparseMatrixBase<Derived>::bottomRightCorner(NRowsType cRows, NColsType cCols) const

This is the const version of bottomRightCorner(NRowsType, NColsType).

template<typename Derived> template<int CRows, int CCols>
FixedBlockXpr<CRows, CCols>::Type Eigen::SparseMatrixBase<Derived>::bottomRightCorner()

Returns an expression of a fixed-size bottom-right corner of *this.

The template parameters CRows and CCols are the number of rows and columns in the corner.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomRightCorner<2,2>():" << endl;
cout << m.bottomRightCorner<2,2>() << endl;
m.bottomRightCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomRightCorner<2,2>():
0 9
3 9
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  0
 6  6  0  0

template<typename Derived> template<int CRows, int CCols>
const ConstFixedBlockXpr<CRows, CCols>::Type Eigen::SparseMatrixBase<Derived>::bottomRightCorner() const

This is the const version of bottomRightCorner<int, int>().

template<typename Derived> template<int CRows, int CCols>
FixedBlockXpr<CRows, CCols>::Type Eigen::SparseMatrixBase<Derived>::bottomRightCorner(Index cRows, Index cCols)

Template parameters
CRows number of rows in corner as specified at compile-time
CCols number of columns in corner as specified at compile-time
Parameters
cRows number of rows in corner as specified at run-time
cCols number of columns in corner as specified at run-time
Returns an expression of a bottom-right corner of *this.

This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomRightCorner<2,Dynamic>(2,2):" << endl;
cout << m.bottomRightCorner<2,Dynamic>(2,2) << endl;
m.bottomRightCorner<2,Dynamic>(2,2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomRightCorner<2,Dynamic>(2,2):
0 9
3 9
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  0
 6  6  0  0

template<typename Derived> template<int CRows, int CCols>
const ConstFixedBlockXpr<CRows, CCols>::Type Eigen::SparseMatrixBase<Derived>::bottomRightCorner(Index cRows, Index cCols) const

This is the const version of bottomRightCorner<int, int>(Index, Index).

template<typename Derived> template<typename NRowsType>
NRowsBlockXpr<...>::Type Eigen::SparseMatrixBase<Derived>::bottomRows(NRowsType n)

Template parameters
NRowsType the type of the value handling the number of rows in the block, typically Index.
Parameters
n the number of rows in the block
Returns a block consisting of the bottom rows of *this.

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.bottomRows(2):" << endl;
cout << a.bottomRows(2) << endl;
a.bottomRows(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.bottomRows(2):
 6 -3  0  9
 6  6  3  9
Now the array a is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  0
 0  0  0  0

The number of rows n can also be specified at compile-time by passing Eigen::fix<N>, or Eigen::fix<N>(n) as arguments. See block() for the details.

template<typename Derived> template<typename NRowsType>
const ConstNRowsBlockXpr<...>::Type Eigen::SparseMatrixBase<Derived>::bottomRows(NRowsType n) const

This is the const version of bottomRows(NRowsType).

template<typename Derived> template<int N>
NRowsBlockXpr<N>::Type Eigen::SparseMatrixBase<Derived>::bottomRows(Index n = N)

Template parameters
N the number of rows in the block as specified at compile-time
Parameters
n the number of rows in the block as specified at run-time
Returns a block consisting of the bottom rows of *this.

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.bottomRows<2>():" << endl;
cout << a.bottomRows<2>() << endl;
a.bottomRows<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.bottomRows<2>():
 6 -3  0  9
 6  6  3  9
Now the array a is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  0
 0  0  0  0

template<typename Derived> template<int N>
ConstNRowsBlockXpr<N>::Type Eigen::SparseMatrixBase<Derived>::bottomRows(Index n = N) const

This is the const version of bottomRows<int>().

template<typename Derived> template<typename NewType>
CastXpr<NewType>::Type Eigen::SparseMatrixBase<Derived>::cast() const

Returns an expression of *this with the Scalar type casted to NewScalar.

The template parameter NewScalar is the type we are casting the scalars to.

This method does not change the sparsity of *this: the conversion function is applied to explicitly stored coefficients only.

template<typename Derived>
ColXpr Eigen::SparseMatrixBase<Derived>::col(Index i)

Returns an expression of the i-th column of *this. Note that the numbering starts at 0.

Example:

Matrix3d m = Matrix3d::Identity();
m.col(1) = Vector3d(4,5,6);
cout << m << endl;

Output:

1 4 0
0 5 0
0 6 1

template<typename Derived>
ConstColXpr Eigen::SparseMatrixBase<Derived>::col(Index i) const

This is the const version of col().

template<typename Derived>
Index Eigen::SparseMatrixBase<Derived>::cols() const

Returns the number of columns.

template<typename Derived>
ConjugateReturnType Eigen::SparseMatrixBase<Derived>::conjugate() const

Returns an expression of the complex conjugate of *this.

This method does not change the sparsity of *this: the complex conjugate is applied to explicitly stored coefficients only.

template<typename Derived> template<bool Cond>
internal::conditional<Cond, ConjugateReturnType, const Derived&>::type Eigen::SparseMatrixBase<Derived>::conjugateIf() const

Returns an expression of the complex conjugate of *this if Cond==true, returns derived() otherwise.

This method does not change the sparsity of *this: the complex conjugate is applied to explicitly stored coefficients only.

template<typename Derived>
const CwiseAbsReturnType Eigen::SparseMatrixBase<Derived>::cwiseAbs() const

Returns an expression of the coefficient-wise absolute value of *this

Example:

MatrixXd m(2,3);
m << 2, -4, 6,   
     -5, 1, 0;
cout << m.cwiseAbs() << endl;

Output:

2 4 6
5 1 0

This method does not change the sparsity of *this: the absolute value is applied to explicitly stored coefficients only.

template<typename Derived>
const CwiseAbs2ReturnType Eigen::SparseMatrixBase<Derived>::cwiseAbs2() const

Returns an expression of the coefficient-wise squared absolute value of *this

Example:

MatrixXd m(2,3);
m << 2, -4, 6,   
     -5, 1, 0;
cout << m.cwiseAbs2() << endl;

Output:

 4 16 36
25  1  0

This method does not change the sparsity of *this: the squared absolute value is applied to explicitly stored coefficients only.

template<typename Derived> template<typename OtherDerived>
const CwiseBinaryOp<std::equal_to<Scalar>, const Derived, const OtherDerived> Eigen::SparseMatrixBase<Derived>::cwiseEqual(const Eigen::SparseMatrixBase<OtherDerived>& other) const

Returns an expression of the coefficient-wise == operator of *this and other

Example:

MatrixXi m(2,2);
m << 1, 0,
     1, 1;
cout << "Comparing m with identity matrix:" << endl;
cout << m.cwiseEqual(MatrixXi::Identity(2,2)) << endl;
Index count = m.cwiseEqual(MatrixXi::Identity(2,2)).count();
cout << "Number of coefficients that are equal: " << count << endl;

Output:

Comparing m with identity matrix:
1 1
0 1
Number of coefficients that are equal: 3

template<typename Derived>
const CwiseScalarEqualReturnType Eigen::SparseMatrixBase<Derived>::cwiseEqual(const Scalar& s) const

Returns an expression of the coefficient-wise == operator of *this and a scalar s

template<typename Derived>
const CwiseInverseReturnType Eigen::SparseMatrixBase<Derived>::cwiseInverse() const

Returns an expression of the coefficient-wise inverse of *this.

Example:

MatrixXd m(2,3);
m << 2, 0.5, 1,   
     3, 0.25, 1;
cout << m.cwiseInverse() << endl;

Output:

  0.5     2     1
0.333     4     1

This method does not change the sparsity of *this: the inverse is applied to explicitly stored coefficients only.

template<typename Derived> template<typename OtherDerived>
const CwiseBinaryOp<internal::scalar_max_op<Scalar, Scalar>, const Derived, const OtherDerived> Eigen::SparseMatrixBase<Derived>::cwiseMax(const Eigen::SparseMatrixBase<OtherDerived>& other) const

Returns an expression of the coefficient-wise max of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseMax(w) << endl;

Output:

4
3
4

template<typename Derived>
const CwiseBinaryOp<internal::scalar_max_op<Scalar, Scalar>, const Derived, const ConstantReturnType> Eigen::SparseMatrixBase<Derived>::cwiseMax(const Scalar& other) const

Returns an expression of the coefficient-wise max of *this and scalar other

template<typename Derived> template<typename OtherDerived>
const CwiseBinaryOp<internal::scalar_min_op<Scalar, Scalar>, const Derived, const OtherDerived> Eigen::SparseMatrixBase<Derived>::cwiseMin(const Eigen::SparseMatrixBase<OtherDerived>& other) const

Returns an expression of the coefficient-wise min of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseMin(w) << endl;

Output:

2
2
3

template<typename Derived>
const CwiseBinaryOp<internal::scalar_min_op<Scalar, Scalar>, const Derived, const ConstantReturnType> Eigen::SparseMatrixBase<Derived>::cwiseMin(const Scalar& other) const

Returns an expression of the coefficient-wise min of *this and scalar other

template<typename Derived> template<typename OtherDerived>
const CwiseBinaryOp<std::not_equal_to<Scalar>, const Derived, const OtherDerived> Eigen::SparseMatrixBase<Derived>::cwiseNotEqual(const Eigen::SparseMatrixBase<OtherDerived>& other) const

Returns an expression of the coefficient-wise != operator of *this and other

Example:

MatrixXi m(2,2);
m << 1, 0,
     1, 1;
cout << "Comparing m with identity matrix:" << endl;
cout << m.cwiseNotEqual(MatrixXi::Identity(2,2)) << endl;
Index count = m.cwiseNotEqual(MatrixXi::Identity(2,2)).count();
cout << "Number of coefficients that are not equal: " << count << endl;

Output:

Comparing m with identity matrix:
0 0
1 0
Number of coefficients that are not equal: 1

template<typename Derived> template<typename OtherDerived>
const CwiseBinaryOp<internal::scalar_product_op<Derived ::Scalar, OtherDerived ::Scalar>, const Derived, const OtherDerived> Eigen::SparseMatrixBase<Derived>::cwiseProduct(const Eigen::SparseMatrixBase<OtherDerived>& other) const

Returns an expression of the Schur product (coefficient wise product) of *this and other

Example:

Matrix3i a = Matrix3i::Random(), b = Matrix3i::Random();
Matrix3i c = a.cwiseProduct(b);
cout << "a:\n" << a << "\nb:\n" << b << "\nc:\n" << c << endl;

Output:

a:
 7  6 -3
-2  9  6
 6 -6 -5
b:
 1 -3  9
 0  0  3
 3  9  5
c:
  7 -18 -27
  0   0  18
 18 -54 -25

template<typename Derived> template<typename OtherDerived>
const CwiseProductDenseReturnType<OtherDerived>::Type Eigen::SparseMatrixBase<Derived>::cwiseProduct(const MatrixBase<OtherDerived>& other) const

template<typename Derived> template<typename OtherDerived>
const SparseMatrixBase<Derived>::template CwiseProductDenseReturnType<OtherDerived>::Type Eigen::SparseMatrixBase<Derived>::cwiseProduct(const MatrixBase<OtherDerived>& other) const

template<typename Derived> template<typename OtherDerived>
const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived> Eigen::SparseMatrixBase<Derived>::cwiseQuotient(const Eigen::SparseMatrixBase<OtherDerived>& other) const

Returns an expression of the coefficient-wise quotient of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseQuotient(w) << endl;

Output:

 0.5
 1.5
1.33

template<typename Derived>
const CwiseSignReturnType Eigen::SparseMatrixBase<Derived>::cwiseSign() const

Returns an expression of the coefficient-wise signum of *this.

Example:

MatrixXd m(2,3);
m <<  2, -4, 6,
     -5,  1, 0;
cout << m.cwiseSign() << endl;

Output:

 1 -1  1
-1  1  0

This method does not change the sparsity of *this: the sign function is applied to explicitly stored coefficients only.

template<typename Derived>
const CwiseSqrtReturnType Eigen::SparseMatrixBase<Derived>::cwiseSqrt() const

Returns an expression of the coefficient-wise square root of *this.

Example:

Vector3d v(1,2,4);
cout << v.cwiseSqrt() << endl;

Output:

   1
1.41
   2

This method does not change the sparsity of *this: the square-root is applied to explicitly stored coefficients only.

template<typename Derived> template<typename OtherDerived>
internal::traits<Derived>::Scalar Eigen::SparseMatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const

template<typename Derived> template<typename OtherDerived>
internal::traits<Derived>::Scalar Eigen::SparseMatrixBase<Derived>::dot(const SparseMatrixBase<OtherDerived>& other) const

template<typename Derived> template<typename OtherDerived>
Scalar Eigen::SparseMatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const

template<typename Derived> template<typename OtherDerived>
Scalar Eigen::SparseMatrixBase<Derived>::dot(const SparseMatrixBase<OtherDerived>& other) const

template<typename Derived>
const internal::eval<Derived>::type Eigen::SparseMatrixBase<Derived>::eval() const

Returns the matrix or vector obtained by evaluating this expression.

Notice that in the case of a plain matrix or vector (not an expression) this function just returns a const reference, in order to avoid a useless copy.

template<typename Derived> template<typename NType>
FixedSegmentReturnType<...>::Type Eigen::SparseMatrixBase<Derived>::head(NType n)

Template parameters
NType the type of the value handling the number of coefficients in the segment, typically Index.
Parameters
n the number of coefficients in the segment
Returns an expression of the first coefficients of *this with either dynamic or fixed sizes.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.head(2):" << endl << v.head(2) << endl;
v.head(2).setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.head(2):
 7 -2
Now the vector v is:
0 0 6 6

The number of coefficients n can also be specified at compile-time by passing Eigen::fix<N>, or Eigen::fix<N>(n) as arguments. See block() for the details.

template<typename Derived> template<typename NType>
const ConstFixedSegmentReturnType<...>::Type Eigen::SparseMatrixBase<Derived>::head(NType n) const

This is the const version of head(NType).

template<typename Derived> template<int N>
FixedSegmentReturnType<N>::Type Eigen::SparseMatrixBase<Derived>::head(Index n = N)

Template parameters
N the number of coefficients in the segment as specified at compile-time
Parameters
n the number of coefficients in the segment as specified at run-time
Returns a fixed-size expression of the first coefficients of *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.head(2):" << endl << v.head<2>() << endl;
v.head<2>().setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.head(2):
 7 -2
Now the vector v is:
0 0 6 6

template<typename Derived> template<int N>
ConstFixedSegmentReturnType<N>::Type Eigen::SparseMatrixBase<Derived>::head(Index n = N) const

This is the const version of head<int>().

template<typename Derived>
const ImagReturnType Eigen::SparseMatrixBase<Derived>::imag() const

Returns an read-only expression of the imaginary part of *this.

This method does not change the sparsity of *this: the imaginary part function is applied to explicitly stored coefficients only.

template<typename Derived>
NonConstImagReturnType Eigen::SparseMatrixBase<Derived>::imag()

Returns a non const expression of the imaginary part of *this.

This method does not change the sparsity of *this: the imaginary part function is applied to explicitly stored coefficients only.

template<typename Derived>
Index Eigen::SparseMatrixBase<Derived>::innerSize() const

Returns the size of the inner dimension according to the storage order, i.e., the number of rows for a columns major matrix, and the number of cols otherwise

template<typename Derived>
InnerVectorReturnType Eigen::SparseMatrixBase<Derived>::innerVector(Index outer)

Returns the outer -th column (resp. row) of the matrix *this if *this is col-major (resp. row-major).

template<typename Derived>
const ConstInnerVectorReturnType Eigen::SparseMatrixBase<Derived>::innerVector(Index outer) const

Returns the outer -th column (resp. row) of the matrix *this if *this is col-major (resp. row-major). Read-only.

template<typename Derived>
InnerVectorsReturnType Eigen::SparseMatrixBase<Derived>::innerVectors(Index outerStart, Index outerSize)

Returns the outer -th column (resp. row) of the matrix *this if *this is col-major (resp. row-major).

template<typename Derived>
const ConstInnerVectorsReturnType Eigen::SparseMatrixBase<Derived>::innerVectors(Index outerStart, Index outerSize) const

Returns the outer -th column (resp. row) of the matrix *this if *this is col-major (resp. row-major). Read-only.

template<typename Derived> template<typename OtherDerived>
bool Eigen::SparseMatrixBase<Derived>::isApprox(const SparseMatrixBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const

template<typename Derived> template<typename OtherDerived>
bool Eigen::SparseMatrixBase<Derived>::isApprox(const MatrixBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const

template<typename Derived>
bool Eigen::SparseMatrixBase<Derived>::isRValue() const

template<typename Derived>
bool Eigen::SparseMatrixBase<Derived>::isVector() const

Returns true if either the number of rows or the number of columns is equal to 1. In other words, this function returns rows()==1 || cols()==1

template<typename Derived> template<typename NColsType>
NColsBlockXpr<...>::Type Eigen::SparseMatrixBase<Derived>::leftCols(NColsType n)

Template parameters
NColsType the type of the value handling the number of columns in the block, typically Index.
Parameters
n the number of columns in the block
Returns a block consisting of the left columns of *this.

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.leftCols(2):" << endl;
cout << a.leftCols(2) << endl;
a.leftCols(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.leftCols(2):
 7  9
-2 -6
 6 -3
 6  6
Now the array a is:
 0  0 -5 -3
 0  0  1  0
 0  0  0  9
 0  0  3  9

The number of columns n can also be specified at compile-time by passing Eigen::fix<N>, or Eigen::fix<N>(n) as arguments. See block() for the details.

template<typename Derived> template<typename NColsType>
const ConstNColsBlockXpr<...>::Type Eigen::SparseMatrixBase<Derived>::leftCols(NColsType n) const

This is the const version of leftCols(NColsType).

template<typename Derived> template<int N>
NColsBlockXpr<N>::Type Eigen::SparseMatrixBase<Derived>::leftCols(Index n = N)

Template parameters
N the number of columns in the block as specified at compile-time
Parameters
n the number of columns in the block as specified at run-time
Returns a block consisting of the left columns of *this.

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.leftCols<2>():" << endl;
cout << a.leftCols<2>() << endl;
a.leftCols<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.leftCols<2>():
 7  9
-2 -6
 6 -3
 6  6
Now the array a is:
 0  0 -5 -3
 0  0  1  0
 0  0  0  9
 0  0  3  9

template<typename Derived> template<int N>
ConstNColsBlockXpr<N>::Type Eigen::SparseMatrixBase<Derived>::leftCols(Index n = N) const

This is the const version of leftCols<int>().

template<typename Derived>
Derived& Eigen::SparseMatrixBase<Derived>::markAsRValue()

template<typename Derived> template<typename NColsType>
NColsBlockXpr<...>::Type Eigen::SparseMatrixBase<Derived>::middleCols(Index startCol, NColsType numCols)

Template parameters
NColsType the type of the value handling the number of columns in the block, typically Index.
Parameters
startCol the index of the first column in the block
numCols the number of columns in the block
Returns a block consisting of a range of columns of *this.

Example:

#include <Eigen/Core>
#include <iostream>

using namespace Eigen;
using namespace std;

int main(void)
{
    int const N = 5;
    MatrixXi A(N,N);
    A.setRandom();
    cout << "A =\n" << A << '\n' << endl;
    cout << "A(1..3,:) =\n" << A.middleCols(1,3) << endl;
    return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(1..3,:) =
-6  0  9
-3  3  3
 6 -3  5
-5  0 -8
 1  9  2

The number of columns n can also be specified at compile-time by passing Eigen::fix<N>, or Eigen::fix<N>(n) as arguments. See block() for the details.

template<typename Derived> template<typename NColsType>
const ConstNColsBlockXpr<...>::Type Eigen::SparseMatrixBase<Derived>::middleCols(Index startCol, NColsType numCols) const

This is the const version of middleCols(Index,NColsType).

template<typename Derived> template<int N>
NColsBlockXpr<N>::Type Eigen::SparseMatrixBase<Derived>::middleCols(Index startCol, Index n = N)

Template parameters
N the number of columns in the block as specified at compile-time
Parameters
startCol the index of the first column in the block
n the number of columns in the block as specified at run-time
Returns a block consisting of a range of columns of *this.

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

#include <Eigen/Core>
#include <iostream>

using namespace Eigen;
using namespace std;

int main(void)
{
    int const N = 5;
    MatrixXi A(N,N);
    A.setRandom();
    cout << "A =\n" << A << '\n' << endl;
    cout << "A(:,1..3) =\n" << A.middleCols<3>(1) << endl;
    return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(:,1..3) =
-6  0  9
-3  3  3
 6 -3  5
-5  0 -8
 1  9  2

template<typename Derived> template<int N>
ConstNColsBlockXpr<N>::Type Eigen::SparseMatrixBase<Derived>::middleCols(Index startCol, Index n = N) const

This is the const version of middleCols<int>().

template<typename Derived> template<typename NRowsType>
NRowsBlockXpr<...>::Type Eigen::SparseMatrixBase<Derived>::middleRows(Index startRow, NRowsType n)

Template parameters
NRowsType the type of the value handling the number of rows in the block, typically Index.
Parameters
startRow the index of the first row in the block
n the number of rows in the block
Returns a block consisting of a range of rows of *this.

Example:

#include <Eigen/Core>
#include <iostream>

using namespace Eigen;
using namespace std;

int main(void)
{
    int const N = 5;
    MatrixXi A(N,N);
    A.setRandom();
    cout << "A =\n" << A << '\n' << endl;
    cout << "A(2..3,:) =\n" << A.middleRows(2,2) << endl;
    return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(2..3,:) =
 6  6 -3  5 -8
 6 -5  0 -8  6

The number of rows n can also be specified at compile-time by passing Eigen::fix<N>, or Eigen::fix<N>(n) as arguments. See block() for the details.

template<typename Derived> template<typename NRowsType>
const ConstNRowsBlockXpr<...>::Type Eigen::SparseMatrixBase<Derived>::middleRows(Index startRow, NRowsType n) const

This is the const version of middleRows(Index,NRowsType).

template<typename Derived> template<int N>
NRowsBlockXpr<N>::Type Eigen::SparseMatrixBase<Derived>::middleRows(Index startRow, Index n = N)

Template parameters
N the number of rows in the block as specified at compile-time
Parameters
startRow the index of the first row in the block
n the number of rows in the block as specified at run-time
Returns a block consisting of a range of rows of *this.

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

#include <Eigen/Core>
#include <iostream>

using namespace Eigen;
using namespace std;

int main(void)
{
    int const N = 5;
    MatrixXi A(N,N);
    A.setRandom();
    cout << "A =\n" << A << '\n' << endl;
    cout << "A(1..3,:) =\n" << A.middleRows<3>(1) << endl;
    return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(1..3,:) =
-2 -3  3  3 -5
 6  6 -3  5 -8
 6 -5  0 -8  6

template<typename Derived> template<int N>
ConstNRowsBlockXpr<N>::Type Eigen::SparseMatrixBase<Derived>::middleRows(Index startRow, Index n = N) const

This is the const version of middleRows<int>().

template<typename Derived>
RealScalar Eigen::SparseMatrixBase<Derived>::norm() const

template<typename Derived> template<typename OtherDerived>
const CwiseBinaryOp<internal::scalar_boolean_and_op, const Derived, const OtherDerived> Eigen::SparseMatrixBase<Derived>::operator&&(const Eigen::SparseMatrixBase<OtherDerived>& other) const

Returns an expression of the coefficient-wise boolean and operator of *this and other

Example:

Array3d v(-1,2,1), w(-3,2,3);
cout << ((v<w) && (v<0)) << endl;

Output:

0
0
0

template<typename Derived> template<typename T>
const CwiseBinaryOp<internal::scalar_product_op<Scalar, T>, Derived, Constant<T>> Eigen::SparseMatrixBase<Derived>::operator*(const T& scalar) const

Template parameters
T is the scalar type of scalar. It must be compatible with the scalar type of the given expression.
Returns an expression of *this scaled by the scalar factor scalar

template<typename Derived> template<typename OtherDerived>
const Product<Derived, OtherDerived> Eigen::SparseMatrixBase<Derived>::operator*(const DiagonalBase<OtherDerived>& other) const

template<typename Derived> template<typename OtherDerived>
const Product<Derived, OtherDerived, AliasFreeProduct> Eigen::SparseMatrixBase<Derived>::operator*(const SparseMatrixBase<OtherDerived>& other) const

Returns

an expression of the product of two sparse matrices. By default a conservative product preserving the symbolic non zeros is performed. The automatic pruning of the small values can be achieved by calling the pruned() function in which case a totally different product algorithm is employed:

C = (A*B).pruned();             // suppress numerical zeros (exact)
C = (A*B).pruned(ref);
C = (A*B).pruned(ref,epsilon);

where ref is a meaningful non zero reference value.

template<typename Derived> template<typename OtherDerived>
const Product<Derived, OtherDerived> Eigen::SparseMatrixBase<Derived>::operator*(const MatrixBase<OtherDerived>& other) const

template<typename Derived>
Derived& Eigen::SparseMatrixBase<Derived>::operator*=(const Scalar& other)

template<typename Derived> template<typename OtherDerived>
Derived& Eigen::SparseMatrixBase<Derived>::operator*=(const SparseMatrixBase<OtherDerived>& other)

template<typename Derived> template<typename OtherDerived>
const CwiseBinaryOp<sum<Scalar>, const Derived, const OtherDerived> Eigen::SparseMatrixBase<Derived>::operator+(const Eigen::SparseMatrixBase<OtherDerived>& other) const

Returns an expression of the sum of *this and other

template<typename Derived> template<typename OtherDerived>
Derived& Eigen::SparseMatrixBase<Derived>::operator+=(const SparseMatrixBase<OtherDerived>& other)

template<typename Derived> template<typename OtherDerived>
Derived& Eigen::SparseMatrixBase<Derived>::operator+=(const DiagonalBase<OtherDerived>& other)

template<typename Derived> template<typename OtherDerived>
Derived& Eigen::SparseMatrixBase<Derived>::operator+=(const EigenBase<OtherDerived>& other)

template<typename Derived> template<typename OtherDerived>
const CwiseBinaryOp<difference<Scalar>, const Derived, const OtherDerived> Eigen::SparseMatrixBase<Derived>::operator-(const Eigen::SparseMatrixBase<OtherDerived>& other) const

Returns an expression of the difference of *this and other

template<typename Derived>
const NegativeReturnType Eigen::SparseMatrixBase<Derived>::operator-() const

Returns an expression of the opposite of *this

This method does not change the sparsity of *this: the opposite is applied to explicitly stored coefficients only.

template<typename Derived> template<typename OtherDerived>
Derived& Eigen::SparseMatrixBase<Derived>::operator-=(const SparseMatrixBase<OtherDerived>& other)

template<typename Derived> template<typename OtherDerived>
Derived& Eigen::SparseMatrixBase<Derived>::operator-=(const DiagonalBase<OtherDerived>& other)

template<typename Derived> template<typename OtherDerived>
Derived& Eigen::SparseMatrixBase<Derived>::operator-=(const EigenBase<OtherDerived>& other)

template<typename Derived> template<typename T>
const CwiseBinaryOp<internal::scalar_quotient_op<Scalar, T>, Derived, Constant<T>> Eigen::SparseMatrixBase<Derived>::operator/(const T& scalar) const

Template parameters
T is the scalar type of scalar. It must be compatible with the scalar type of the given expression.
Returns an expression of *this divided by the scalar value scalar

template<typename Derived>
Derived& Eigen::SparseMatrixBase<Derived>::operator/=(const Scalar& other)

template<typename Derived> template<typename OtherDerived>
Derived& Eigen::SparseMatrixBase<Derived>::operator=(const EigenBase<OtherDerived>& other)

template<typename Derived> template<typename OtherDerived>
Derived& Eigen::SparseMatrixBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other)

template<typename Derived> template<typename OtherDerived>
Derived& Eigen::SparseMatrixBase<Derived>::operator=(const SparseMatrixBase<OtherDerived>& other)

template<typename Derived>
Derived& Eigen::SparseMatrixBase<Derived>::operator=(const Derived& other)

template<typename Derived> template<typename OtherDerived>
const CwiseBinaryOp<internal::scalar_boolean_or_op, const Derived, const OtherDerived> Eigen::SparseMatrixBase<Derived>::operator||(const Eigen::SparseMatrixBase<OtherDerived>& other) const

Returns an expression of the coefficient-wise boolean or operator of *this and other

Example:

Array3d v(-1,2,1), w(-3,2,3);
cout << ((v<w) || (v<0)) << endl;

Output:

1
0
1

template<typename Derived>
Index Eigen::SparseMatrixBase<Derived>::outerSize() const

Returns the size of the storage major dimension, i.e., the number of columns for a columns major matrix, and the number of rows otherwise

template<typename Derived>
const SparseView<Derived> Eigen::SparseMatrixBase<Derived>::pruned(const Scalar& reference = Scalar(0), const RealScalar& epsilon = NumTraits<Scalar>::dummy_precision()) const

Returns an expression of *this with values smaller than reference * epsilon removed.

This method is typically used in conjunction with the product of two sparse matrices to automatically prune the smallest values as follows:

C = (A*B).pruned();             // suppress numerical zeros (exact)
C = (A*B).pruned(ref);
C = (A*B).pruned(ref,epsilon);

where ref is a meaningful non zero reference value.

template<typename Derived>
RealReturnType Eigen::SparseMatrixBase<Derived>::real() const

Returns a read-only expression of the real part of *this.

This method does not change the sparsity of *this: the real part function is applied to explicitly stored coefficients only.

template<typename Derived>
NonConstRealReturnType Eigen::SparseMatrixBase<Derived>::real()

Returns a non const expression of the real part of *this.

This method does not change the sparsity of *this: the real part function is applied to explicitly stored coefficients only.

template<typename Derived> template<typename NColsType>
NColsBlockXpr<...>::Type Eigen::SparseMatrixBase<Derived>::rightCols(NColsType n)

Template parameters
NColsType the type of the value handling the number of columns in the block, typically Index.
Parameters
n the number of columns in the block
Returns a block consisting of the right columns of *this.

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.rightCols(2):" << endl;
cout << a.rightCols(2) << endl;
a.rightCols(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.rightCols(2):
-5 -3
 1  0
 0  9
 3  9
Now the array a is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  0
 6  6  0  0

The number of columns n can also be specified at compile-time by passing Eigen::fix<N>, or Eigen::fix<N>(n) as arguments. See block() for the details.

template<typename Derived> template<typename NColsType>
const ConstNColsBlockXpr<...>::Type Eigen::SparseMatrixBase<Derived>::rightCols(NColsType n) const

This is the const version of rightCols(NColsType).

template<typename Derived> template<int N>
NColsBlockXpr<N>::Type Eigen::SparseMatrixBase<Derived>::rightCols(Index n = N)

Template parameters
N the number of columns in the block as specified at compile-time
Parameters
n the number of columns in the block as specified at run-time
Returns a block consisting of the right columns of *this.

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.rightCols<2>():" << endl;
cout << a.rightCols<2>() << endl;
a.rightCols<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.rightCols<2>():
-5 -3
 1  0
 0  9
 3  9
Now the array a is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  0
 6  6  0  0

template<typename Derived> template<int N>
ConstNColsBlockXpr<N>::Type Eigen::SparseMatrixBase<Derived>::rightCols(Index n = N) const

This is the const version of rightCols<int>().

template<typename Derived>
RowXpr Eigen::SparseMatrixBase<Derived>::row(Index i)

Returns an expression of the i-th row of *this. Note that the numbering starts at 0.

Example:

Matrix3d m = Matrix3d::Identity();
m.row(1) = Vector3d(4,5,6);
cout << m << endl;

Output:

1 0 0
4 5 6
0 0 1

template<typename Derived>
ConstRowXpr Eigen::SparseMatrixBase<Derived>::row(Index i) const

This is the const version of row(). */.

template<typename Derived>
Index Eigen::SparseMatrixBase<Derived>::rows() const

Returns the number of rows.

template<typename Derived> template<typename NType>
FixedSegmentReturnType<...>::Type Eigen::SparseMatrixBase<Derived>::segment(Index start, NType n)

Template parameters
NType the type of the value handling the number of coefficients in the segment, typically Index.
Parameters
start the first coefficient in the segment
n the number of coefficients in the segment
Returns an expression of a segment (i.e. a vector block) in *this with either dynamic or fixed sizes.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.segment(1, 2):" << endl << v.segment(1, 2) << endl;
v.segment(1, 2).setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.segment(1, 2):
-2  6
Now the vector v is:
7 0 0 6

The number of coefficients n can also be specified at compile-time by passing Eigen::fix<N>, or Eigen::fix<N>(n) as arguments. See block() for the details.

template<typename Derived> template<typename NType>
const ConstFixedSegmentReturnType<...>::Type Eigen::SparseMatrixBase<Derived>::segment(Index start, NType n) const

This is the const version of segment(Index,NType).

template<typename Derived> template<int N>
FixedSegmentReturnType<N>::Type Eigen::SparseMatrixBase<Derived>::segment(Index start, Index n = N)

Template parameters
N the number of coefficients in the segment as specified at compile-time
Parameters
start the index of the first element in the segment
n the number of coefficients in the segment as specified at compile-time
Returns a fixed-size expression of a segment (i.e. a vector block) in *this

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.segment<2>(1):" << endl << v.segment<2>(1) << endl;
v.segment<2>(2).setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.segment<2>(1):
-2  6
Now the vector v is:
 7 -2  0  0

template<typename Derived> template<int N>
ConstFixedSegmentReturnType<N>::Type Eigen::SparseMatrixBase<Derived>::segment(Index start, Index n = N) const

This is the const version of segment<int>(Index).

template<typename Derived> template<unsigned int UpLo>
SparseMatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type Eigen::SparseMatrixBase<Derived>::selfadjointView() const

template<typename Derived> template<unsigned int UpLo>
SparseMatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type Eigen::SparseMatrixBase<Derived>::selfadjointView()

template<typename Derived> template<unsigned int UpLo>
ConstSelfAdjointViewReturnType<UpLo>::Type Eigen::SparseMatrixBase<Derived>::selfadjointView() const

template<typename Derived> template<unsigned int UpLo>
SelfAdjointViewReturnType<UpLo>::Type Eigen::SparseMatrixBase<Derived>::selfadjointView()

template<typename Derived>
Index Eigen::SparseMatrixBase<Derived>::size() const

Returns the number of coefficients, which is rows()*cols().

template<typename Derived>
RealScalar Eigen::SparseMatrixBase<Derived>::squaredNorm() const

template<typename Derived> template<DirectionType Direction>
internal::conditional<Direction==Vertical, ColXpr, RowXpr>::type Eigen::SparseMatrixBase<Derived>::subVector(Index i)

Returns the i-th subvector (column or vector) according to the Direction

template<typename Derived> template<DirectionType Direction>
internal::conditional<Direction==Vertical, ConstColXpr, ConstRowXpr>::type Eigen::SparseMatrixBase<Derived>::subVector(Index i) const

This is the const version of subVector(Index)

template<typename Derived> template<DirectionType Direction>
Index Eigen::SparseMatrixBase<Derived>::subVectors() const

Returns the number of subvectors (rows or columns) in the direction Direction

template<typename Derived>
Scalar Eigen::SparseMatrixBase<Derived>::sum() const

template<typename Derived> template<typename NType>
FixedSegmentReturnType<...>::Type Eigen::SparseMatrixBase<Derived>::tail(NType n)

Template parameters
NType the type of the value handling the number of coefficients in the segment, typically Index.
Parameters
n the number of coefficients in the segment
Returns an expression of a last coefficients of *this with either dynamic or fixed sizes.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.tail(2):" << endl << v.tail(2) << endl;
v.tail(2).setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.tail(2):
6 6
Now the vector v is:
 7 -2  0  0

The number of coefficients n can also be specified at compile-time by passing Eigen::fix<N>, or Eigen::fix<N>(n) as arguments. See block() for the details.

template<typename Derived> template<typename NType>
const ConstFixedSegmentReturnType<...>::Type Eigen::SparseMatrixBase<Derived>::tail(NType n) const

This is the const version of tail(Index).

template<typename Derived> template<int N>
FixedSegmentReturnType<N>::Type Eigen::SparseMatrixBase<Derived>::tail(Index n = N)

Template parameters
N the number of coefficients in the segment as specified at compile-time
Parameters
n the number of coefficients in the segment as specified at run-time
Returns a fixed-size expression of the last coefficients of *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.tail(2):" << endl << v.tail<2>() << endl;
v.tail<2>().setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.tail(2):
6 6
Now the vector v is:
 7 -2  0  0

template<typename Derived> template<int N>
ConstFixedSegmentReturnType<N>::Type Eigen::SparseMatrixBase<Derived>::tail(Index n = N) const

This is the const version of tail<int>.

template<typename Derived>
DenseMatrixType Eigen::SparseMatrixBase<Derived>::toDense() const

template<typename Derived> template<typename NRowsType, typename NColsType>
FixedBlockXpr<...,...>::Type Eigen::SparseMatrixBase<Derived>::topLeftCorner(NRowsType cRows, NColsType cCols)

Template parameters
NRowsType the type of the value handling the number of rows in the block, typically Index.
NColsType the type of the value handling the number of columns in the block, typically Index.
Parameters
cRows the number of rows in the corner
cCols the number of columns in the corner
Returns an expression of a top-left corner of *this with either dynamic or fixed sizes.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topLeftCorner(2, 2):" << endl;
cout << m.topLeftCorner(2, 2) << endl;
m.topLeftCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topLeftCorner(2, 2):
 7  9
-2 -6
Now the matrix m is:
 0  0 -5 -3
 0  0  1  0
 6 -3  0  9
 6  6  3  9

The number of rows blockRows and columns blockCols can also be specified at compile-time by passing Eigen::fix<N>, or Eigen::fix<N>(n) as arguments. See block() for the details.

template<typename Derived> template<typename NRowsType, typename NColsType>
const ConstFixedBlockXpr<...,...>::Type Eigen::SparseMatrixBase<Derived>::topLeftCorner(NRowsType cRows, NColsType cCols) const

This is the const version of topLeftCorner(Index, Index).

template<typename Derived> template<int CRows, int CCols>
FixedBlockXpr<CRows, CCols>::Type Eigen::SparseMatrixBase<Derived>::topLeftCorner()

Returns an expression of a fixed-size top-left corner of *this.

The template parameters CRows and CCols are the number of rows and columns in the corner.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topLeftCorner<2,2>():" << endl;
cout << m.topLeftCorner<2,2>() << endl;
m.topLeftCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topLeftCorner<2,2>():
 7  9
-2 -6
Now the matrix m is:
 0  0 -5 -3
 0  0  1  0
 6 -3  0  9
 6  6  3  9

template<typename Derived> template<int CRows, int CCols>
const ConstFixedBlockXpr<CRows, CCols>::Type Eigen::SparseMatrixBase<Derived>::topLeftCorner() const

This is the const version of topLeftCorner<int, int>().

template<typename Derived> template<int CRows, int CCols>
FixedBlockXpr<CRows, CCols>::Type Eigen::SparseMatrixBase<Derived>::topLeftCorner(Index cRows, Index cCols)

Template parameters
CRows number of rows in corner as specified at compile-time
CCols number of columns in corner as specified at compile-time
Parameters
cRows number of rows in corner as specified at run-time
cCols number of columns in corner as specified at run-time
Returns an expression of a top-left corner of *this.

This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topLeftCorner<2,Dynamic>(2,2):" << endl;
cout << m.topLeftCorner<2,Dynamic>(2,2) << endl;
m.topLeftCorner<2,Dynamic>(2,2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topLeftCorner<2,Dynamic>(2,2):
 7  9
-2 -6
Now the matrix m is:
 0  0 -5 -3
 0  0  1  0
 6 -3  0  9
 6  6  3  9

template<typename Derived> template<int CRows, int CCols>
const ConstFixedBlockXpr<CRows, CCols>::Type Eigen::SparseMatrixBase<Derived>::topLeftCorner(Index cRows, Index cCols) const

This is the const version of topLeftCorner<int, int>(Index, Index).

template<typename Derived> template<typename NRowsType, typename NColsType>
FixedBlockXpr<...,...>::Type Eigen::SparseMatrixBase<Derived>::topRightCorner(NRowsType cRows, NColsType cCols)

Template parameters
NRowsType the type of the value handling the number of rows in the block, typically Index.
NColsType the type of the value handling the number of columns in the block, typically Index.
Parameters
cRows the number of rows in the corner
cCols the number of columns in the corner
Returns a expression of a top-right corner of *this with either dynamic or fixed sizes.

Example with dynamic sizes:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topRightCorner(2, 2):" << endl;
cout << m.topRightCorner(2, 2) << endl;
m.topRightCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topRightCorner(2, 2):
-5 -3
 1  0
Now the matrix m is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  9
 6  6  3  9

The number of rows blockRows and columns blockCols can also be specified at compile-time by passing Eigen::fix<N>, or Eigen::fix<N>(n) as arguments. See block() for the details.

template<typename Derived> template<typename NRowsType, typename NColsType>
const ConstFixedBlockXpr<...,...>::Type Eigen::SparseMatrixBase<Derived>::topRightCorner(NRowsType cRows, NColsType cCols) const

This is the const version of topRightCorner(NRowsType, NColsType).

template<typename Derived> template<int CRows, int CCols>
FixedBlockXpr<CRows, CCols>::Type Eigen::SparseMatrixBase<Derived>::topRightCorner()

Template parameters
CRows the number of rows in the corner
CCols the number of columns in the corner
Returns an expression of a fixed-size top-right corner of *this.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topRightCorner<2,2>():" << endl;
cout << m.topRightCorner<2,2>() << endl;
m.topRightCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topRightCorner<2,2>():
-5 -3
 1  0
Now the matrix m is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  9
 6  6  3  9

template<typename Derived> template<int CRows, int CCols>
const ConstFixedBlockXpr<CRows, CCols>::Type Eigen::SparseMatrixBase<Derived>::topRightCorner() const

This is the const version of topRightCorner<int, int>().

template<typename Derived> template<int CRows, int CCols>
FixedBlockXpr<CRows, CCols>::Type Eigen::SparseMatrixBase<Derived>::topRightCorner(Index cRows, Index cCols)

Template parameters
CRows number of rows in corner as specified at compile-time
CCols number of columns in corner as specified at compile-time
Parameters
cRows number of rows in corner as specified at run-time
cCols number of columns in corner as specified at run-time
Returns an expression of a top-right corner of *this.

This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topRightCorner<2,Dynamic>(2,2):" << endl;
cout << m.topRightCorner<2,Dynamic>(2,2) << endl;
m.topRightCorner<2,Dynamic>(2,2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topRightCorner<2,Dynamic>(2,2):
-5 -3
 1  0
Now the matrix m is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  9
 6  6  3  9

template<typename Derived> template<int CRows, int CCols>
const ConstFixedBlockXpr<CRows, CCols>::Type Eigen::SparseMatrixBase<Derived>::topRightCorner(Index cRows, Index cCols) const

This is the const version of topRightCorner<int, int>(Index, Index).

template<typename Derived> template<typename NRowsType>
NRowsBlockXpr<...>::Type Eigen::SparseMatrixBase<Derived>::topRows(NRowsType n)

Template parameters
NRowsType the type of the value handling the number of rows in the block, typically Index.
Parameters
n the number of rows in the block
Returns a block consisting of the top rows of *this.

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.topRows(2):" << endl;
cout << a.topRows(2) << endl;
a.topRows(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.topRows(2):
 7  9 -5 -3
-2 -6  1  0
Now the array a is:
 0  0  0  0
 0  0  0  0
 6 -3  0  9
 6  6  3  9

The number of rows n can also be specified at compile-time by passing Eigen::fix<N>, or Eigen::fix<N>(n) as arguments. See block() for the details.

template<typename Derived> template<typename NRowsType>
const ConstNRowsBlockXpr<...>::Type Eigen::SparseMatrixBase<Derived>::topRows(NRowsType n) const

This is the const version of topRows(NRowsType).

template<typename Derived> template<int N>
NRowsBlockXpr<N>::Type Eigen::SparseMatrixBase<Derived>::topRows(Index n = N)

Template parameters
N the number of rows in the block as specified at compile-time
Parameters
n the number of rows in the block as specified at run-time
Returns a block consisting of the top rows of *this.

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.topRows<2>():" << endl;
cout << a.topRows<2>() << endl;
a.topRows<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.topRows<2>():
 7  9 -5 -3
-2 -6  1  0
Now the array a is:
 0  0  0  0
 0  0  0  0
 6 -3  0  9
 6  6  3  9

template<typename Derived> template<int N>
ConstNRowsBlockXpr<N>::Type Eigen::SparseMatrixBase<Derived>::topRows(Index n = N) const

This is the const version of topRows<int>().

template<typename Derived>
TransposeReturnType Eigen::SparseMatrixBase<Derived>::transpose()

template<typename Derived>
const ConstTransposeReturnType Eigen::SparseMatrixBase<Derived>::transpose() const

template<typename Derived> template<int Mode>
const TriangularView<const Derived, Mode> Eigen::SparseMatrixBase<Derived>::triangularView() const

template<typename Derived>
SparseSymmetricPermutationProduct<Derived, Upper|Lower> Eigen::SparseMatrixBase<Derived>::twistedBy(const PermutationMatrix<Dynamic, Dynamic, StorageIndex>& perm) const

Returns an expression of P H P^-1 where H is the matrix represented by *this

template<typename Derived> template<typename CustomUnaryOp>
const CwiseUnaryOp<CustomUnaryOp, const Derived> Eigen::SparseMatrixBase<Derived>::unaryExpr(const CustomUnaryOp& func = CustomUnaryOp()) const

Apply a unary operator coefficient-wise.

Template parameters
CustomUnaryOp Type of func
Parameters
func in Functor implementing the unary operator
Returns An expression of a custom coefficient-wise unary operator func of *this

The function ptr_fun() from the C++ standard library can be used to make functors out of normal functions.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;

// define function to be applied coefficient-wise
double ramp(double x)
{
  if (x > 0)
    return x;
  else 
    return 0;
}

int main(int, char**)
{
  Matrix4d m1 = Matrix4d::Random();
  cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(ptr_fun(ramp)) << endl;
  return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
  0.68  0.823      0      0
     0      0  0.108 0.0268
 0.566      0      0  0.904
 0.597  0.536  0.258  0.832

Genuine functors allow for more possibilities, for instance it may contain a state.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;

// define a custom template unary functor
template<typename Scalar>
struct CwiseClampOp {
  CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {}
  const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); }
  Scalar m_inf, m_sup;
};

int main(int, char**)
{
  Matrix4d m1 = Matrix4d::Random();
  cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl;
  return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
    0.5     0.5  -0.444   -0.27
 -0.211    -0.5   0.108  0.0268
    0.5   -0.33 -0.0452     0.5
    0.5     0.5   0.258     0.5

This method does not change the sparsity of *this: the unary function is applied to explicitly stored coefficients only.

template<typename Derived> template<typename CustomViewOp>
const CwiseUnaryView<CustomViewOp, const Derived> Eigen::SparseMatrixBase<Derived>::unaryViewExpr(const CustomViewOp& func = CustomViewOp()) const

Returns an expression of a custom coefficient-wise unary operator func of *this

The template parameter CustomUnaryOp is the type of the functor of the custom unary operator.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;

// define a custom template unary functor
template<typename Scalar>
struct CwiseClampOp {
  CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {}
  const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); }
  Scalar m_inf, m_sup;
};

int main(int, char**)
{
  Matrix4d m1 = Matrix4d::Random();
  cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl;
  return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
    0.5     0.5  -0.444   -0.27
 -0.211    -0.5   0.108  0.0268
    0.5   -0.33 -0.0452     0.5
    0.5     0.5   0.258     0.5

This method does not change the sparsity of *this: the unary function is applied to explicitly stored coefficients only.

template<typename Derived>
static StorageIndex Eigen::SparseMatrixBase<Derived>::convert_index(const Index idx) protected

template<typename Derived> template<typename OtherDerived>
Derived& Eigen::SparseMatrixBase<Derived>::assign(const OtherDerived& other) protected

template<typename Derived> template<typename OtherDerived>
void Eigen::SparseMatrixBase<Derived>::assignGeneric(const OtherDerived& other) protected

template<typename Derived> template<typename T>
const CwiseBinaryOp<internal::scalar_product_op<T, Scalar>, Constant<T>, Derived> operator*(const T& scalar, const StorageBaseType& expr)

Template parameters
T is the scalar type of scalar. It must be compatible with the scalar type of the given expression.
Returns an expression of expr scaled by the scalar factor scalar

template<typename Derived> template<typename OtherDerived>
const Product<OtherDerived, Derived> operator*(const DiagonalBase<OtherDerived>& lhs, const SparseMatrixBase& rhs)

template<typename Derived> template<typename OtherDerived>
const Product<OtherDerived, Derived> operator*(const MatrixBase<OtherDerived>& lhs, const SparseMatrixBase& rhs)

template<typename Derived>
std::ostream& operator<<(std::ostream& s, const SparseMatrixBase& m)

Variable documentation

template<typename Derived>
bool Eigen::SparseMatrixBase<Derived>::m_isRValue protected