template<typename Derived>
SparseMatrixBase class
Base class of any sparse matrices or sparse expressions.
Template parameters | |
---|---|
Derived | is the derived type, e.g. a sparse matrix type, or an expression, etc. |
Contents
This class can be extended with the help of the plugin mechanism described on the page Extending MatrixBase (and other classes) by defining the preprocessor symbol EIGEN_SPARSEMATRIXBASE_PLUGIN
.
Base classes
-
template<typename Derived>class EigenBase
Derived classes
-
template<typename Derived>class SparseCompressedBase
- Common base class for sparse [compressed]-{row|column}-storage format.
Public types
- enum (anonymous) { RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime, ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime, SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime, internal::traits<Derived>::ColsAtCompileTime>::ret), MaxRowsAtCompileTime = RowsAtCompileTime, MaxColsAtCompileTime = ColsAtCompileTime, MaxSizeAtCompileTime = (internal::size_at_compile_time<MaxRowsAtCompileTime, MaxColsAtCompileTime>::ret), IsVectorAtCompileTime = RowsAtCompileTime == 1 || ColsAtCompileTime == 1, NumDimensions = int(MaxSizeAtCompileTime) == 1 ? 0 : bool(IsVectorAtCompileTime) ? 1 : 2, Flags = internal::traits<Derived>::Flags, IsRowMajor = Flags&RowMajorBit ? 1 : 0, InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime) : int(IsRowMajor) ? int(ColsAtCompileTime) : int(RowsAtCompileTime) }
-
using AdjointReturnType = internal::conditional<NumTraits<Scalar>::IsComplex, CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, Eigen::
Transpose<const Derived>>, Transpose<const Derived>>::type - using ConstTransposeReturnType = internal::add_const<Transpose<const Derived>>::type
- using CwiseAbs2ReturnType = CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const Derived>
- using CwiseAbsReturnType = CwiseUnaryOp<internal::scalar_abs_op<Scalar>, const Derived>
- using CwiseInverseReturnType = CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const Derived>
- using CwiseScalarEqualReturnType = CwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_EQ>, const Derived, const ConstantReturnType>
- using CwiseSignReturnType = CwiseUnaryOp<internal::scalar_sign_op<Scalar>, const Derived>
- using CwiseSqrtReturnType = CwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const Derived>
- using IndexVector = Matrix<StorageIndex, Dynamic, 1>
- using PacketReturnType = internal::add_const_on_value_type_if_arithmetic<typename internal::packet_traits<Scalar>::type>::type
- using PacketScalar = internal::packet_traits<Scalar>::type
- using PlainObject = SparseMatrix<Scalar, Flags&RowMajorBit ? RowMajor :ColMajor, StorageIndex>
- using Scalar = internal::traits<Derived>::Scalar
- using ScalarVector = Matrix<Scalar, Dynamic, 1>
- using StorageBaseType = SparseMatrixBase
- using StorageIndex = internal::traits<Derived>::StorageIndex
- using StorageKind = internal::traits<Derived>::StorageKind
- using TransposeReturnType = Transpose<Derived>
- using value_type = Scalar
Constructors, destructors, conversion operators
Public functions
- auto adjoint() const -> const AdjointReturnType
-
template<typename CustomBinaryOp, typename OtherDerived>auto binaryExpr(const Eigen::
SparseMatrixBase<OtherDerived>& other, const CustomBinaryOp& func = CustomBinaryOp()) const -> const CwiseBinaryOp<CustomBinaryOp, const Derived, const OtherDerived> -
template<typename NRowsType, typename NColsType>auto block(Index startRow, Index startCol, NRowsType blockRows, NColsType blockCols) -> FixedBlockXpr<...,...>::Type
-
template<typename NRowsType, typename NColsType>auto block(Index startRow, Index startCol, NRowsType blockRows, NColsType blockCols) const -> const ConstFixedBlockXpr<...,...>::Type
- This is the const version of block(Index,Index,NRowsType,NColsType)
-
template<int NRows, int NCols>auto block(Index startRow, Index startCol) -> FixedBlockXpr<NRows, NCols>::Type
-
template<int NRows, int NCols>auto block(Index startRow, Index startCol) const -> const ConstFixedBlockXpr<NRows, NCols>::Type
- This is the const version of block<>(Index, Index). */.
-
template<int NRows, int NCols>auto block(Index startRow, Index startCol, Index blockRows, Index blockCols) -> FixedBlockXpr<NRows, NCols>::Type
-
template<int NRows, int NCols>auto block(Index startRow, Index startCol, Index blockRows, Index blockCols) const -> const ConstFixedBlockXpr<NRows, NCols>::Type
- This is the const version of block<>(Index, Index, Index, Index).
- auto blueNorm() const -> RealScalar
-
template<typename NRowsType, typename NColsType>auto bottomLeftCorner(NRowsType cRows, NColsType cCols) -> FixedBlockXpr<...,...>::Type
-
template<typename NRowsType, typename NColsType>auto bottomLeftCorner(NRowsType cRows, NColsType cCols) const -> ConstFixedBlockXpr<...,...>::Type
- This is the const version of bottomLeftCorner(NRowsType, NColsType).
-
template<int CRows, int CCols>auto bottomLeftCorner() -> FixedBlockXpr<CRows, CCols>::Type
-
template<int CRows, int CCols>auto bottomLeftCorner() const -> const ConstFixedBlockXpr<CRows, CCols>::Type
- This is the const version of bottomLeftCorner<int, int>().
-
template<int CRows, int CCols>auto bottomLeftCorner(Index cRows, Index cCols) -> FixedBlockXpr<CRows, CCols>::Type
-
template<int CRows, int CCols>auto bottomLeftCorner(Index cRows, Index cCols) const -> const ConstFixedBlockXpr<CRows, CCols>::Type
- This is the const version of bottomLeftCorner<int, int>(Index, Index).
-
template<typename NRowsType, typename NColsType>auto bottomRightCorner(NRowsType cRows, NColsType cCols) -> FixedBlockXpr<...,...>::Type
-
template<typename NRowsType, typename NColsType>auto bottomRightCorner(NRowsType cRows, NColsType cCols) const -> const ConstFixedBlockXpr<...,...>::Type
- This is the const version of bottomRightCorner(NRowsType, NColsType).
-
template<int CRows, int CCols>auto bottomRightCorner() -> FixedBlockXpr<CRows, CCols>::Type
-
template<int CRows, int CCols>auto bottomRightCorner() const -> const ConstFixedBlockXpr<CRows, CCols>::Type
- This is the const version of bottomRightCorner<int, int>().
-
template<int CRows, int CCols>auto bottomRightCorner(Index cRows, Index cCols) -> FixedBlockXpr<CRows, CCols>::Type
-
template<int CRows, int CCols>auto bottomRightCorner(Index cRows, Index cCols) const -> const ConstFixedBlockXpr<CRows, CCols>::Type
- This is the const version of bottomRightCorner<int, int>(Index, Index).
-
template<typename NRowsType>auto bottomRows(NRowsType n) -> NRowsBlockXpr<...>::Type
-
template<typename NRowsType>auto bottomRows(NRowsType n) const -> const ConstNRowsBlockXpr<...>::Type
- This is the const version of bottomRows(NRowsType).
-
template<int N>auto bottomRows(Index n = N) -> NRowsBlockXpr<N>::Type
-
template<int N>auto bottomRows(Index n = N) const -> ConstNRowsBlockXpr<N>::Type
- This is the const version of bottomRows<int>().
-
template<typename NewType>auto cast() const -> CastXpr<NewType>::Type
- auto col(Index i) -> ColXpr
- auto col(Index i) const -> ConstColXpr
- This is the const version of col().
- auto cols() const -> Index
- auto conjugate() const -> ConjugateReturnType
-
template<bool Cond>auto conjugateIf() const -> internal::conditional<Cond, ConjugateReturnType, const Derived&>::type
- auto cwiseAbs() const -> const CwiseAbsReturnType
- auto cwiseAbs2() const -> const CwiseAbs2ReturnType
-
template<typename OtherDerived>auto cwiseEqual(const Eigen::
SparseMatrixBase<OtherDerived>& other) const -> const CwiseBinaryOp<std::equal_to<Scalar>, const Derived, const OtherDerived> - auto cwiseEqual(const Scalar& s) const -> const CwiseScalarEqualReturnType
- auto cwiseInverse() const -> const CwiseInverseReturnType
-
template<typename OtherDerived>auto cwiseMax(const Eigen::
SparseMatrixBase<OtherDerived>& other) const -> const CwiseBinaryOp<internal::scalar_max_op<Scalar, Scalar>, const Derived, const OtherDerived> - auto cwiseMax(const Scalar& other) const -> const CwiseBinaryOp<internal::scalar_max_op<Scalar, Scalar>, const Derived, const ConstantReturnType>
-
template<typename OtherDerived>auto cwiseMin(const Eigen::
SparseMatrixBase<OtherDerived>& other) const -> const CwiseBinaryOp<internal::scalar_min_op<Scalar, Scalar>, const Derived, const OtherDerived> - auto cwiseMin(const Scalar& other) const -> const CwiseBinaryOp<internal::scalar_min_op<Scalar, Scalar>, const Derived, const ConstantReturnType>
-
template<typename OtherDerived>auto cwiseNotEqual(const Eigen::
SparseMatrixBase<OtherDerived>& other) const -> const CwiseBinaryOp<std::not_equal_to<Scalar>, const Derived, const OtherDerived> -
template<typename OtherDerived>auto cwiseProduct(const Eigen::
SparseMatrixBase<OtherDerived>& other) const -> const CwiseBinaryOp<internal::scalar_product_op<Derived ::Scalar, OtherDerived ::Scalar>, const Derived, const OtherDerived> -
template<typename OtherDerived>auto cwiseProduct(const MatrixBase<OtherDerived>& other) const -> const CwiseProductDenseReturnType<OtherDerived>::Type
-
template<typename OtherDerived>auto cwiseProduct(const MatrixBase<OtherDerived>& other) const -> const SparseMatrixBase<Derived>::template CwiseProductDenseReturnType<OtherDerived>::Type
-
template<typename OtherDerived>auto cwiseQuotient(const Eigen::
SparseMatrixBase<OtherDerived>& other) const -> const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived> - auto cwiseSign() const -> const CwiseSignReturnType
- auto cwiseSqrt() const -> const CwiseSqrtReturnType
-
template<typename OtherDerived>auto dot(const MatrixBase<OtherDerived>& other) const -> internal::traits<Derived>::Scalar
-
template<typename OtherDerived>auto dot(const SparseMatrixBase<OtherDerived>& other) const -> internal::traits<Derived>::Scalar
-
template<typename OtherDerived>auto dot(const MatrixBase<OtherDerived>& other) const -> Scalar
-
template<typename OtherDerived>auto dot(const SparseMatrixBase<OtherDerived>& other) const -> Scalar
- auto eval() const -> const internal::eval<Derived>::type
-
template<typename NType>auto head(NType n) -> FixedSegmentReturnType<...>::Type
-
template<typename NType>auto head(NType n) const -> const ConstFixedSegmentReturnType<...>::Type
- This is the const version of head(NType).
-
template<int N>auto head(Index n = N) -> FixedSegmentReturnType<N>::Type
-
template<int N>auto head(Index n = N) const -> ConstFixedSegmentReturnType<N>::Type
- This is the const version of head<int>().
- auto imag() const -> const ImagReturnType
- auto imag() -> NonConstImagReturnType
- auto innerSize() const -> Index
- auto innerVector(Index outer) -> InnerVectorReturnType
- auto innerVector(Index outer) const -> const ConstInnerVectorReturnType
- auto innerVectors(Index outerStart, Index outerSize) -> InnerVectorsReturnType
- auto innerVectors(Index outerStart, Index outerSize) const -> const ConstInnerVectorsReturnType
-
template<typename OtherDerived>auto isApprox(const SparseMatrixBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const -> bool
-
template<typename OtherDerived>auto isApprox(const MatrixBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const -> bool
- auto isRValue() const -> bool
- auto isVector() const -> bool
-
template<typename NColsType>auto leftCols(NColsType n) -> NColsBlockXpr<...>::Type
-
template<typename NColsType>auto leftCols(NColsType n) const -> const ConstNColsBlockXpr<...>::Type
- This is the const version of leftCols(NColsType).
-
template<int N>auto leftCols(Index n = N) -> NColsBlockXpr<N>::Type
-
template<int N>auto leftCols(Index n = N) const -> ConstNColsBlockXpr<N>::Type
- This is the const version of leftCols<int>().
- auto markAsRValue() -> Derived&
-
template<typename NColsType>auto middleCols(Index startCol, NColsType numCols) -> NColsBlockXpr<...>::Type
-
template<typename NColsType>auto middleCols(Index startCol, NColsType numCols) const -> const ConstNColsBlockXpr<...>::Type
- This is the const version of middleCols(Index,NColsType).
-
template<int N>auto middleCols(Index startCol, Index n = N) -> NColsBlockXpr<N>::Type
-
template<int N>auto middleCols(Index startCol, Index n = N) const -> ConstNColsBlockXpr<N>::Type
- This is the const version of middleCols<int>().
-
template<typename NRowsType>auto middleRows(Index startRow, NRowsType n) -> NRowsBlockXpr<...>::Type
-
template<typename NRowsType>auto middleRows(Index startRow, NRowsType n) const -> const ConstNRowsBlockXpr<...>::Type
- This is the const version of middleRows(Index,NRowsType).
-
template<int N>auto middleRows(Index startRow, Index n = N) -> NRowsBlockXpr<N>::Type
-
template<int N>auto middleRows(Index startRow, Index n = N) const -> ConstNRowsBlockXpr<N>::Type
- This is the const version of middleRows<int>().
- auto norm() const -> RealScalar
-
template<typename OtherDerived>auto operator&&(const Eigen::
SparseMatrixBase<OtherDerived>& other) const -> const CwiseBinaryOp<internal::scalar_boolean_and_op, const Derived, const OtherDerived> -
template<typename T>auto operator*(const T& scalar) const -> const CwiseBinaryOp<internal::scalar_product_op<Scalar, T>, Derived, Constant<T>>
-
template<typename OtherDerived>auto operator*(const DiagonalBase<OtherDerived>& other) const -> const Product<Derived, OtherDerived>
-
template<typename OtherDerived>auto operator*(const SparseMatrixBase<OtherDerived>& other) const -> const Product<Derived, OtherDerived, AliasFreeProduct>
-
template<typename OtherDerived>auto operator*(const MatrixBase<OtherDerived>& other) const -> const Product<Derived, OtherDerived>
- auto operator*=(const Scalar& other) -> Derived&
-
template<typename OtherDerived>auto operator*=(const SparseMatrixBase<OtherDerived>& other) -> Derived&
-
template<typename OtherDerived>auto operator+(const Eigen::
SparseMatrixBase<OtherDerived>& other) const -> const CwiseBinaryOp<sum<Scalar>, const Derived, const OtherDerived> -
template<typename OtherDerived>auto operator+=(const SparseMatrixBase<OtherDerived>& other) -> Derived&
-
template<typename OtherDerived>auto operator+=(const DiagonalBase<OtherDerived>& other) -> Derived&
-
template<typename OtherDerived>auto operator+=(const EigenBase<OtherDerived>& other) -> Derived&
-
template<typename OtherDerived>auto operator-(const Eigen::
SparseMatrixBase<OtherDerived>& other) const -> const CwiseBinaryOp<difference<Scalar>, const Derived, const OtherDerived> - auto operator-() const -> const NegativeReturnType
-
template<typename OtherDerived>auto operator-=(const SparseMatrixBase<OtherDerived>& other) -> Derived&
-
template<typename OtherDerived>auto operator-=(const DiagonalBase<OtherDerived>& other) -> Derived&
-
template<typename OtherDerived>auto operator-=(const EigenBase<OtherDerived>& other) -> Derived&
-
template<typename T>auto operator/(const T& scalar) const -> const CwiseBinaryOp<internal::scalar_quotient_op<Scalar, T>, Derived, Constant<T>>
- auto operator/=(const Scalar& other) -> Derived&
-
template<typename OtherDerived>auto operator=(const EigenBase<OtherDerived>& other) -> Derived&
-
template<typename OtherDerived>auto operator=(const ReturnByValue<OtherDerived>& other) -> Derived&
-
template<typename OtherDerived>auto operator=(const SparseMatrixBase<OtherDerived>& other) -> Derived&
- auto operator=(const Derived& other) -> Derived&
-
template<typename OtherDerived>auto operator||(const Eigen::
SparseMatrixBase<OtherDerived>& other) const -> const CwiseBinaryOp<internal::scalar_boolean_or_op, const Derived, const OtherDerived> - auto outerSize() const -> Index
- auto pruned(const Scalar& reference = Scalar(0), const RealScalar& epsilon = NumTraits<Scalar>::dummy_precision()) const -> const SparseView<Derived>
- auto real() const -> RealReturnType
- auto real() -> NonConstRealReturnType
-
template<typename NColsType>auto rightCols(NColsType n) -> NColsBlockXpr<...>::Type
-
template<typename NColsType>auto rightCols(NColsType n) const -> const ConstNColsBlockXpr<...>::Type
- This is the const version of rightCols(NColsType).
-
template<int N>auto rightCols(Index n = N) -> NColsBlockXpr<N>::Type
-
template<int N>auto rightCols(Index n = N) const -> ConstNColsBlockXpr<N>::Type
- This is the const version of rightCols<int>().
- auto row(Index i) -> RowXpr
- auto row(Index i) const -> ConstRowXpr
- This is the const version of row(). */.
- auto rows() const -> Index
-
template<typename NType>auto segment(Index start, NType n) -> FixedSegmentReturnType<...>::Type
-
template<typename NType>auto segment(Index start, NType n) const -> const ConstFixedSegmentReturnType<...>::Type
- This is the const version of segment(Index,NType).
-
template<int N>auto segment(Index start, Index n = N) -> FixedSegmentReturnType<N>::Type
-
template<int N>auto segment(Index start, Index n = N) const -> ConstFixedSegmentReturnType<N>::Type
- This is the const version of segment<int>(Index).
-
template<unsigned int UpLo>auto selfadjointView() const -> SparseMatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type
-
template<unsigned int UpLo>auto selfadjointView() -> SparseMatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type
-
template<unsigned int UpLo>auto selfadjointView() const -> ConstSelfAdjointViewReturnType<UpLo>::Type
-
template<unsigned int UpLo>auto selfadjointView() -> SelfAdjointViewReturnType<UpLo>::Type
- auto size() const -> Index
- auto squaredNorm() const -> RealScalar
-
template<DirectionType Direction>auto subVector(Index i) -> internal::conditional<Direction==Vertical, ColXpr, RowXpr>::type
-
template<DirectionType Direction>auto subVector(Index i) const -> internal::conditional<Direction==Vertical, ConstColXpr, ConstRowXpr>::type
-
template<DirectionType Direction>auto subVectors() const -> Index
- auto sum() const -> Scalar
-
template<typename NType>auto tail(NType n) -> FixedSegmentReturnType<...>::Type
-
template<typename NType>auto tail(NType n) const -> const ConstFixedSegmentReturnType<...>::Type
- This is the const version of tail(Index).
-
template<int N>auto tail(Index n = N) -> FixedSegmentReturnType<N>::Type
-
template<int N>auto tail(Index n = N) const -> ConstFixedSegmentReturnType<N>::Type
- This is the const version of tail<int>.
- auto toDense() const -> DenseMatrixType
-
template<typename NRowsType, typename NColsType>auto topLeftCorner(NRowsType cRows, NColsType cCols) -> FixedBlockXpr<...,...>::Type
-
template<typename NRowsType, typename NColsType>auto topLeftCorner(NRowsType cRows, NColsType cCols) const -> const ConstFixedBlockXpr<...,...>::Type
- This is the const version of topLeftCorner(Index, Index).
-
template<int CRows, int CCols>auto topLeftCorner() -> FixedBlockXpr<CRows, CCols>::Type
-
template<int CRows, int CCols>auto topLeftCorner() const -> const ConstFixedBlockXpr<CRows, CCols>::Type
- This is the const version of topLeftCorner<int, int>().
-
template<int CRows, int CCols>auto topLeftCorner(Index cRows, Index cCols) -> FixedBlockXpr<CRows, CCols>::Type
-
template<int CRows, int CCols>auto topLeftCorner(Index cRows, Index cCols) const -> const ConstFixedBlockXpr<CRows, CCols>::Type
- This is the const version of topLeftCorner<int, int>(Index, Index).
-
template<typename NRowsType, typename NColsType>auto topRightCorner(NRowsType cRows, NColsType cCols) -> FixedBlockXpr<...,...>::Type
-
template<typename NRowsType, typename NColsType>auto topRightCorner(NRowsType cRows, NColsType cCols) const -> const ConstFixedBlockXpr<...,...>::Type
- This is the const version of topRightCorner(NRowsType, NColsType).
-
template<int CRows, int CCols>auto topRightCorner() -> FixedBlockXpr<CRows, CCols>::Type
-
template<int CRows, int CCols>auto topRightCorner() const -> const ConstFixedBlockXpr<CRows, CCols>::Type
- This is the const version of topRightCorner<int, int>().
-
template<int CRows, int CCols>auto topRightCorner(Index cRows, Index cCols) -> FixedBlockXpr<CRows, CCols>::Type
-
template<int CRows, int CCols>auto topRightCorner(Index cRows, Index cCols) const -> const ConstFixedBlockXpr<CRows, CCols>::Type
- This is the const version of topRightCorner<int, int>(Index, Index).
-
template<typename NRowsType>auto topRows(NRowsType n) -> NRowsBlockXpr<...>::Type
-
template<typename NRowsType>auto topRows(NRowsType n) const -> const ConstNRowsBlockXpr<...>::Type
- This is the const version of topRows(NRowsType).
-
template<int N>auto topRows(Index n = N) -> NRowsBlockXpr<N>::Type
-
template<int N>auto topRows(Index n = N) const -> ConstNRowsBlockXpr<N>::Type
- This is the const version of topRows<int>().
- auto transpose() -> TransposeReturnType
- auto transpose() const -> const ConstTransposeReturnType
-
template<int Mode>auto triangularView() const -> const TriangularView<const Derived, Mode>
- auto twistedBy(const PermutationMatrix<Dynamic, Dynamic, StorageIndex>& perm) const -> SparseSymmetricPermutationProduct<Derived, Upper|Lower>
-
template<typename CustomUnaryOp>auto unaryExpr(const CustomUnaryOp& func = CustomUnaryOp()) const -> const CwiseUnaryOp<CustomUnaryOp, const Derived>
- Apply a unary operator coefficient-wise.
-
template<typename CustomViewOp>auto unaryViewExpr(const CustomViewOp& func = CustomViewOp()) const -> const CwiseUnaryView<CustomViewOp, const Derived>
Protected static functions
- static auto convert_index(const Index idx) -> StorageIndex
Protected functions
-
template<typename OtherDerived>auto assign(const OtherDerived& other) -> Derived&
-
template<typename OtherDerived>void assignGeneric(const OtherDerived& other)
Protected variables
- bool m_isRValue
Friends
-
template<typename T>auto operator*(const T& scalar, const StorageBaseType& expr) -> const CwiseBinaryOp<internal::scalar_product_op<T, Scalar>, Constant<T>, Derived>
-
template<typename OtherDerived>auto operator*(const DiagonalBase<OtherDerived>& lhs, const SparseMatrixBase& rhs) -> const Product<OtherDerived, Derived>
-
template<typename OtherDerived>auto operator*(const MatrixBase<OtherDerived>& lhs, const SparseMatrixBase& rhs) -> const Product<OtherDerived, Derived>
- auto operator<<(std::ostream& s, const SparseMatrixBase& m) -> std::ostream&
Enum documentation
template<typename Derived>
enum Eigen:: SparseMatrixBase<Derived>:: (anonymous)
Enumerators | |
---|---|
RowsAtCompileTime |
The number of rows at compile-time. This is just a copy of the value provided by the Derived type. If a value is not known at compile-time, it is set to the Dynamic constant. |
ColsAtCompileTime |
The number of columns at compile-time. This is just a copy of the value provided by the Derived type. If a value is not known at compile-time, it is set to the Dynamic constant. |
SizeAtCompileTime |
This is equal to the number of coefficients, i.e. the number of rows times the number of columns, or to Dynamic if this is not known at compile-time. |
MaxRowsAtCompileTime | |
MaxColsAtCompileTime | |
MaxSizeAtCompileTime | |
IsVectorAtCompileTime |
This is set to true if either the number of rows or the number of columns is known at compile-time to be equal to 1. Indeed, in that case, we are dealing with a column-vector (if there is only one column) or with a row-vector (if there is only one row). |
NumDimensions |
This value is equal to Tensor::NumDimensions, i.e. 0 for scalars, 1 for vectors, and 2 for matrices. |
Flags |
This stores expression Flags flags which may or may not be inherited by new expressions constructed from this one. See the list of flags. |
IsRowMajor | |
InnerSizeAtCompileTime |
Typedef documentation
template<typename Derived>
typedef internal::conditional<NumTraits<Scalar>::IsComplex, CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, Eigen:: Transpose<const Derived>>, Transpose<const Derived>>::type Eigen:: SparseMatrixBase<Derived>:: AdjointReturnType
template<typename Derived>
typedef internal::add_const<Transpose<const Derived>>::type Eigen:: SparseMatrixBase<Derived>:: ConstTransposeReturnType
template<typename Derived>
typedef CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const Derived> Eigen:: SparseMatrixBase<Derived>:: CwiseAbs2ReturnType
template<typename Derived>
typedef CwiseUnaryOp<internal::scalar_abs_op<Scalar>, const Derived> Eigen:: SparseMatrixBase<Derived>:: CwiseAbsReturnType
template<typename Derived>
typedef CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const Derived> Eigen:: SparseMatrixBase<Derived>:: CwiseInverseReturnType
template<typename Derived>
typedef CwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_EQ>, const Derived, const ConstantReturnType> Eigen:: SparseMatrixBase<Derived>:: CwiseScalarEqualReturnType
template<typename Derived>
typedef CwiseUnaryOp<internal::scalar_sign_op<Scalar>, const Derived> Eigen:: SparseMatrixBase<Derived>:: CwiseSignReturnType
template<typename Derived>
typedef CwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const Derived> Eigen:: SparseMatrixBase<Derived>:: CwiseSqrtReturnType
template<typename Derived>
typedef Matrix<StorageIndex, Dynamic, 1> Eigen:: SparseMatrixBase<Derived>:: IndexVector
template<typename Derived>
typedef internal::add_const_on_value_type_if_arithmetic<typename internal::packet_traits<Scalar>::type>::type Eigen:: SparseMatrixBase<Derived>:: PacketReturnType
template<typename Derived>
typedef internal::packet_traits<Scalar>::type Eigen:: SparseMatrixBase<Derived>:: PacketScalar
template<typename Derived>
typedef SparseMatrix<Scalar, Flags&RowMajorBit ? RowMajor :ColMajor, StorageIndex> Eigen:: SparseMatrixBase<Derived>:: PlainObject
template<typename Derived>
typedef internal::traits<Derived>::Scalar Eigen:: SparseMatrixBase<Derived>:: Scalar
template<typename Derived>
typedef Matrix<Scalar, Dynamic, 1> Eigen:: SparseMatrixBase<Derived>:: ScalarVector
template<typename Derived>
typedef SparseMatrixBase Eigen:: SparseMatrixBase<Derived>:: StorageBaseType
template<typename Derived>
typedef internal::traits<Derived>::StorageIndex Eigen:: SparseMatrixBase<Derived>:: StorageIndex
The integer type used to store indices within a SparseMatrix. For a SparseMatrix<Scalar,Options,IndexType>
it an alias of the third template parameter IndexType
.
template<typename Derived>
typedef internal::traits<Derived>::StorageKind Eigen:: SparseMatrixBase<Derived>:: StorageKind
template<typename Derived>
typedef Transpose<Derived> Eigen:: SparseMatrixBase<Derived>:: TransposeReturnType
template<typename Derived>
typedef Scalar Eigen:: SparseMatrixBase<Derived>:: value_type
The numeric type of the expression' coefficients, e.g. float, double, int or std::complex<float>, etc.
It is an alias for the Scalar type
Function documentation
template<typename Derived>
Eigen:: SparseMatrixBase<Derived>:: SparseMatrixBase()
template<typename Derived>
const AdjointReturnType Eigen:: SparseMatrixBase<Derived>:: adjoint() const
template<typename Derived>
template<typename CustomBinaryOp, typename OtherDerived>
const CwiseBinaryOp<CustomBinaryOp, const Derived, const OtherDerived> Eigen:: SparseMatrixBase<Derived>:: binaryExpr(const Eigen:: SparseMatrixBase<OtherDerived>& other,
const CustomBinaryOp& func = CustomBinaryOp()) const
Returns | an expression of a custom coefficient-wise operator func of *this and other |
---|
The template parameter CustomBinaryOp is the type of the functor of the custom operator (see class CwiseBinaryOp for an example)
Here is an example illustrating the use of custom functors:
#include <Eigen/Core> #include <iostream> using namespace Eigen; using namespace std; // define a custom template binary functor template<typename Scalar> struct MakeComplexOp { EIGEN_EMPTY_STRUCT_CTOR(MakeComplexOp) typedef complex<Scalar> result_type; complex<Scalar> operator()(const Scalar& a, const Scalar& b) const { return complex<Scalar>(a,b); } }; int main(int, char**) { Matrix4d m1 = Matrix4d::Random(), m2 = Matrix4d::Random(); cout << m1.binaryExpr(m2, MakeComplexOp<double>()) << endl; return 0; }
Output:
(0.68,0.271) (0.823,-0.967) (-0.444,-0.687) (-0.27,0.998) (-0.211,0.435) (-0.605,-0.514) (0.108,-0.198) (0.0268,-0.563) (0.566,-0.717) (-0.33,-0.726) (-0.0452,-0.74) (0.904,0.0259) (0.597,0.214) (0.536,0.608) (0.258,-0.782) (0.832,0.678)
template<typename Derived>
template<typename NRowsType, typename NColsType>
FixedBlockXpr<...,...>::Type Eigen:: SparseMatrixBase<Derived>:: block(Index startRow,
Index startCol,
NRowsType blockRows,
NColsType blockCols)
Template parameters | |
---|---|
NRowsType | the type of the value handling the number of rows in the block, typically Index. |
NColsType | the type of the value handling the number of columns in the block, typically Index. |
Parameters | |
startRow | the first row in the block |
startCol | the first column in the block |
blockRows | number of rows in the block, specified at either run-time or compile-time |
blockCols | number of columns in the block, specified at either run-time or compile-time |
Returns | an expression of a block in *this with either dynamic or fixed sizes. |
Example using runtime (aka dynamic) sizes:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.block(1, 1, 2, 2):" << endl << m.block(1, 1, 2, 2) << endl; m.block(1, 1, 2, 2).setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.block(1, 1, 2, 2): -6 1 -3 0 Now the matrix m is: 7 9 -5 -3 -2 0 0 0 6 0 0 9 6 6 3 9
New in Eigen 3.4.:
The number of rows blockRows and columns blockCols can also be specified at compile-time by passing Eigen::n
plays the role of a runtime fallback value in case N
equals Eigen::NRows
and dynamic number of columns cols:
mat.block(i,j,fix<NRows>,cols)
This function thus fully covers the features offered by the following overloads block<NRows,NCols>(Index, Index), and block<NRows,NCols>(Index, Index, Index, Index) that are thus obsolete. Indeed, this generic version avoids redundancy, it preserves the argument order, and prevents the need to rely on the template keyword in templated code.
but with less redundancy and more consistency as it does not modify the argument order and seamlessly enable hybrid fixed/dynamic sizes.
template<typename Derived>
template<typename NRowsType, typename NColsType>
const ConstFixedBlockXpr<...,...>::Type Eigen:: SparseMatrixBase<Derived>:: block(Index startRow,
Index startCol,
NRowsType blockRows,
NColsType blockCols) const
This is the const version of block(Index,Index,NRowsType,NColsType)
template<typename Derived>
template<int NRows, int NCols>
FixedBlockXpr<NRows, NCols>::Type Eigen:: SparseMatrixBase<Derived>:: block(Index startRow,
Index startCol)
Parameters | |
---|---|
startRow | the first row in the block |
startCol | the first column in the block |
Returns | a fixed-size expression of a block of *this . |
The template parameters NRows and NCols are the number of rows and columns in the block.
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.block<2,2>(1,1):" << endl << m.block<2,2>(1,1) << endl; m.block<2,2>(1,1).setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.block<2,2>(1,1): -6 1 -3 0 Now the matrix m is: 7 9 -5 -3 -2 0 0 0 6 0 0 9 6 6 3 9
template<typename Derived>
template<int NRows, int NCols>
const ConstFixedBlockXpr<NRows, NCols>::Type Eigen:: SparseMatrixBase<Derived>:: block(Index startRow,
Index startCol) const
This is the const version of block<>(Index, Index). */.
template<typename Derived>
template<int NRows, int NCols>
FixedBlockXpr<NRows, NCols>::Type Eigen:: SparseMatrixBase<Derived>:: block(Index startRow,
Index startCol,
Index blockRows,
Index blockCols)
Template parameters | |
---|---|
NRows | number of rows in block as specified at compile-time |
NCols | number of columns in block as specified at compile-time |
Parameters | |
startRow | the first row in the block |
startCol | the first column in the block |
blockRows | number of rows in block as specified at run-time |
blockCols | number of columns in block as specified at run-time |
Returns | an expression of a block of *this . |
This function is mainly useful for blocks where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, blockRows should equal NRows unless NRows is Dynamic, and the same for the number of columns.
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is the block:" << endl << m.block<2, Dynamic>(1, 1, 2, 3) << endl; m.block<2, Dynamic>(1, 1, 2, 3).setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is the block: -6 1 0 -3 0 9 Now the matrix m is: 7 9 -5 -3 -2 0 0 0 6 0 0 0 6 6 3 9
template<typename Derived>
RealScalar Eigen:: SparseMatrixBase<Derived>:: blueNorm() const
template<typename Derived>
template<typename NRowsType, typename NColsType>
FixedBlockXpr<...,...>::Type Eigen:: SparseMatrixBase<Derived>:: bottomLeftCorner(NRowsType cRows,
NColsType cCols)
Template parameters | |
---|---|
NRowsType | the type of the value handling the number of rows in the block, typically Index. |
NColsType | the type of the value handling the number of columns in the block, typically Index. |
Parameters | |
cRows | the number of rows in the corner |
cCols | the number of columns in the corner |
Returns | an expression of a bottom-left corner of *this with either dynamic or fixed sizes. |
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.bottomLeftCorner(2, 2):" << endl; cout << m.bottomLeftCorner(2, 2) << endl; m.bottomLeftCorner(2, 2).setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.bottomLeftCorner(2, 2): 6 -3 6 6 Now the matrix m is: 7 9 -5 -3 -2 -6 1 0 0 0 0 9 0 0 3 9
The number of rows blockRows and columns blockCols can also be specified at compile-time by passing Eigen::
template<typename Derived>
template<typename NRowsType, typename NColsType>
ConstFixedBlockXpr<...,...>::Type Eigen:: SparseMatrixBase<Derived>:: bottomLeftCorner(NRowsType cRows,
NColsType cCols) const
This is the const version of bottomLeftCorner(NRowsType, NColsType).
template<typename Derived>
template<int CRows, int CCols>
FixedBlockXpr<CRows, CCols>::Type Eigen:: SparseMatrixBase<Derived>:: bottomLeftCorner()
Returns | an expression of a fixed-size bottom-left corner of *this . |
---|
The template parameters CRows and CCols are the number of rows and columns in the corner.
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.bottomLeftCorner<2,2>():" << endl; cout << m.bottomLeftCorner<2,2>() << endl; m.bottomLeftCorner<2,2>().setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.bottomLeftCorner<2,2>(): 6 -3 6 6 Now the matrix m is: 7 9 -5 -3 -2 -6 1 0 0 0 0 9 0 0 3 9
template<typename Derived>
template<int CRows, int CCols>
const ConstFixedBlockXpr<CRows, CCols>::Type Eigen:: SparseMatrixBase<Derived>:: bottomLeftCorner() const
This is the const version of bottomLeftCorner<int, int>().
template<typename Derived>
template<int CRows, int CCols>
FixedBlockXpr<CRows, CCols>::Type Eigen:: SparseMatrixBase<Derived>:: bottomLeftCorner(Index cRows,
Index cCols)
Template parameters | |
---|---|
CRows | number of rows in corner as specified at compile-time |
CCols | number of columns in corner as specified at compile-time |
Parameters | |
cRows | number of rows in corner as specified at run-time |
cCols | number of columns in corner as specified at run-time |
Returns | an expression of a bottom-left corner of *this . |
This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.bottomLeftCorner<2,Dynamic>(2,2):" << endl; cout << m.bottomLeftCorner<2,Dynamic>(2,2) << endl; m.bottomLeftCorner<2,Dynamic>(2,2).setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.bottomLeftCorner<2,Dynamic>(2,2): 6 -3 6 6 Now the matrix m is: 7 9 -5 -3 -2 -6 1 0 0 0 0 9 0 0 3 9
template<typename Derived>
template<int CRows, int CCols>
const ConstFixedBlockXpr<CRows, CCols>::Type Eigen:: SparseMatrixBase<Derived>:: bottomLeftCorner(Index cRows,
Index cCols) const
This is the const version of bottomLeftCorner<int, int>(Index, Index).
template<typename Derived>
template<typename NRowsType, typename NColsType>
FixedBlockXpr<...,...>::Type Eigen:: SparseMatrixBase<Derived>:: bottomRightCorner(NRowsType cRows,
NColsType cCols)
Template parameters | |
---|---|
NRowsType | the type of the value handling the number of rows in the block, typically Index. |
NColsType | the type of the value handling the number of columns in the block, typically Index. |
Parameters | |
cRows | the number of rows in the corner |
cCols | the number of columns in the corner |
Returns | an expression of a bottom-right corner of *this with either dynamic or fixed sizes. |
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.bottomRightCorner(2, 2):" << endl; cout << m.bottomRightCorner(2, 2) << endl; m.bottomRightCorner(2, 2).setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.bottomRightCorner(2, 2): 0 9 3 9 Now the matrix m is: 7 9 -5 -3 -2 -6 1 0 6 -3 0 0 6 6 0 0
The number of rows blockRows and columns blockCols can also be specified at compile-time by passing Eigen::
template<typename Derived>
template<typename NRowsType, typename NColsType>
const ConstFixedBlockXpr<...,...>::Type Eigen:: SparseMatrixBase<Derived>:: bottomRightCorner(NRowsType cRows,
NColsType cCols) const
This is the const version of bottomRightCorner(NRowsType, NColsType).
template<typename Derived>
template<int CRows, int CCols>
FixedBlockXpr<CRows, CCols>::Type Eigen:: SparseMatrixBase<Derived>:: bottomRightCorner()
Returns | an expression of a fixed-size bottom-right corner of *this . |
---|
The template parameters CRows and CCols are the number of rows and columns in the corner.
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.bottomRightCorner<2,2>():" << endl; cout << m.bottomRightCorner<2,2>() << endl; m.bottomRightCorner<2,2>().setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.bottomRightCorner<2,2>(): 0 9 3 9 Now the matrix m is: 7 9 -5 -3 -2 -6 1 0 6 -3 0 0 6 6 0 0
template<typename Derived>
template<int CRows, int CCols>
const ConstFixedBlockXpr<CRows, CCols>::Type Eigen:: SparseMatrixBase<Derived>:: bottomRightCorner() const
This is the const version of bottomRightCorner<int, int>().
template<typename Derived>
template<int CRows, int CCols>
FixedBlockXpr<CRows, CCols>::Type Eigen:: SparseMatrixBase<Derived>:: bottomRightCorner(Index cRows,
Index cCols)
Template parameters | |
---|---|
CRows | number of rows in corner as specified at compile-time |
CCols | number of columns in corner as specified at compile-time |
Parameters | |
cRows | number of rows in corner as specified at run-time |
cCols | number of columns in corner as specified at run-time |
Returns | an expression of a bottom-right corner of *this . |
This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.bottomRightCorner<2,Dynamic>(2,2):" << endl; cout << m.bottomRightCorner<2,Dynamic>(2,2) << endl; m.bottomRightCorner<2,Dynamic>(2,2).setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.bottomRightCorner<2,Dynamic>(2,2): 0 9 3 9 Now the matrix m is: 7 9 -5 -3 -2 -6 1 0 6 -3 0 0 6 6 0 0
template<typename Derived>
template<int CRows, int CCols>
const ConstFixedBlockXpr<CRows, CCols>::Type Eigen:: SparseMatrixBase<Derived>:: bottomRightCorner(Index cRows,
Index cCols) const
This is the const version of bottomRightCorner<int, int>(Index, Index).
template<typename Derived>
template<typename NRowsType>
NRowsBlockXpr<...>::Type Eigen:: SparseMatrixBase<Derived>:: bottomRows(NRowsType n)
Template parameters | |
---|---|
NRowsType | the type of the value handling the number of rows in the block, typically Index. |
Parameters | |
n | the number of rows in the block |
Returns | a block consisting of the bottom rows of *this . |
Example:
Array44i a = Array44i::Random(); cout << "Here is the array a:" << endl << a << endl; cout << "Here is a.bottomRows(2):" << endl; cout << a.bottomRows(2) << endl; a.bottomRows(2).setZero(); cout << "Now the array a is:" << endl << a << endl;
Output:
Here is the array a: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is a.bottomRows(2): 6 -3 0 9 6 6 3 9 Now the array a is: 7 9 -5 -3 -2 -6 1 0 0 0 0 0 0 0 0 0
The number of rows n can also be specified at compile-time by passing Eigen::
template<typename Derived>
template<typename NRowsType>
const ConstNRowsBlockXpr<...>::Type Eigen:: SparseMatrixBase<Derived>:: bottomRows(NRowsType n) const
This is the const version of bottomRows(NRowsType).
template<typename Derived>
template<int N>
NRowsBlockXpr<N>::Type Eigen:: SparseMatrixBase<Derived>:: bottomRows(Index n = N)
Template parameters | |
---|---|
N | the number of rows in the block as specified at compile-time |
Parameters | |
n | the number of rows in the block as specified at run-time |
Returns | a block consisting of the bottom rows of *this . |
The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.
Example:
Array44i a = Array44i::Random(); cout << "Here is the array a:" << endl << a << endl; cout << "Here is a.bottomRows<2>():" << endl; cout << a.bottomRows<2>() << endl; a.bottomRows<2>().setZero(); cout << "Now the array a is:" << endl << a << endl;
Output:
Here is the array a: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is a.bottomRows<2>(): 6 -3 0 9 6 6 3 9 Now the array a is: 7 9 -5 -3 -2 -6 1 0 0 0 0 0 0 0 0 0
template<typename Derived>
template<int N>
ConstNRowsBlockXpr<N>::Type Eigen:: SparseMatrixBase<Derived>:: bottomRows(Index n = N) const
This is the const version of bottomRows<int>().
template<typename Derived>
template<typename NewType>
CastXpr<NewType>::Type Eigen:: SparseMatrixBase<Derived>:: cast() const
Returns | an expression of *this with the Scalar type casted to NewScalar. |
---|
The template parameter NewScalar is the type we are casting the scalars to.
This method does not change the sparsity of *this
: the conversion function is applied to explicitly stored coefficients only.
template<typename Derived>
ConjugateReturnType Eigen:: SparseMatrixBase<Derived>:: conjugate() const
Returns | an expression of the complex conjugate of *this . |
---|
This method does not change the sparsity of *this
: the complex conjugate is applied to explicitly stored coefficients only.
template<typename Derived>
template<bool Cond>
internal::conditional<Cond, ConjugateReturnType, const Derived&>::type Eigen:: SparseMatrixBase<Derived>:: conjugateIf() const
Returns | an expression of the complex conjugate of *this if Cond==true, returns derived() otherwise. |
---|
This method does not change the sparsity of *this
: the complex conjugate is applied to explicitly stored coefficients only.
template<typename Derived>
const CwiseAbsReturnType Eigen:: SparseMatrixBase<Derived>:: cwiseAbs() const
Returns | an expression of the coefficient-wise absolute value of *this |
---|
Example:
MatrixXd m(2,3); m << 2, -4, 6, -5, 1, 0; cout << m.cwiseAbs() << endl;
Output:
2 4 6 5 1 0
This method does not change the sparsity of *this
: the absolute value is applied to explicitly stored coefficients only.
template<typename Derived>
const CwiseAbs2ReturnType Eigen:: SparseMatrixBase<Derived>:: cwiseAbs2() const
Returns | an expression of the coefficient-wise squared absolute value of *this |
---|
Example:
MatrixXd m(2,3); m << 2, -4, 6, -5, 1, 0; cout << m.cwiseAbs2() << endl;
Output:
4 16 36 25 1 0
This method does not change the sparsity of *this
: the squared absolute value is applied to explicitly stored coefficients only.
template<typename Derived>
template<typename OtherDerived>
const CwiseBinaryOp<std::equal_to<Scalar>, const Derived, const OtherDerived> Eigen:: SparseMatrixBase<Derived>:: cwiseEqual(const Eigen:: SparseMatrixBase<OtherDerived>& other) const
Returns | an expression of the coefficient-wise == operator of *this and other |
---|
Example:
MatrixXi m(2,2); m << 1, 0, 1, 1; cout << "Comparing m with identity matrix:" << endl; cout << m.cwiseEqual(MatrixXi::Identity(2,2)) << endl; Index count = m.cwiseEqual(MatrixXi::Identity(2,2)).count(); cout << "Number of coefficients that are equal: " << count << endl;
Output:
Comparing m with identity matrix: 1 1 0 1 Number of coefficients that are equal: 3
template<typename Derived>
const CwiseScalarEqualReturnType Eigen:: SparseMatrixBase<Derived>:: cwiseEqual(const Scalar& s) const
Returns | an expression of the coefficient-wise == operator of *this and a scalar s |
---|
template<typename Derived>
const CwiseInverseReturnType Eigen:: SparseMatrixBase<Derived>:: cwiseInverse() const
Returns | an expression of the coefficient-wise inverse of *this. |
---|
Example:
MatrixXd m(2,3); m << 2, 0.5, 1, 3, 0.25, 1; cout << m.cwiseInverse() << endl;
Output:
0.5 2 1 0.333 4 1
This method does not change the sparsity of *this
: the inverse is applied to explicitly stored coefficients only.
template<typename Derived>
template<typename OtherDerived>
const CwiseBinaryOp<internal::scalar_max_op<Scalar, Scalar>, const Derived, const OtherDerived> Eigen:: SparseMatrixBase<Derived>:: cwiseMax(const Eigen:: SparseMatrixBase<OtherDerived>& other) const
Returns | an expression of the coefficient-wise max of *this and other |
---|
Example:
Vector3d v(2,3,4), w(4,2,3); cout << v.cwiseMax(w) << endl;
Output:
4 3 4
template<typename Derived>
const CwiseBinaryOp<internal::scalar_max_op<Scalar, Scalar>, const Derived, const ConstantReturnType> Eigen:: SparseMatrixBase<Derived>:: cwiseMax(const Scalar& other) const
Returns | an expression of the coefficient-wise max of *this and scalar other |
---|
template<typename Derived>
template<typename OtherDerived>
const CwiseBinaryOp<internal::scalar_min_op<Scalar, Scalar>, const Derived, const OtherDerived> Eigen:: SparseMatrixBase<Derived>:: cwiseMin(const Eigen:: SparseMatrixBase<OtherDerived>& other) const
Returns | an expression of the coefficient-wise min of *this and other |
---|
Example:
Vector3d v(2,3,4), w(4,2,3); cout << v.cwiseMin(w) << endl;
Output:
2 2 3
template<typename Derived>
const CwiseBinaryOp<internal::scalar_min_op<Scalar, Scalar>, const Derived, const ConstantReturnType> Eigen:: SparseMatrixBase<Derived>:: cwiseMin(const Scalar& other) const
Returns | an expression of the coefficient-wise min of *this and scalar other |
---|
template<typename Derived>
template<typename OtherDerived>
const CwiseBinaryOp<std::not_equal_to<Scalar>, const Derived, const OtherDerived> Eigen:: SparseMatrixBase<Derived>:: cwiseNotEqual(const Eigen:: SparseMatrixBase<OtherDerived>& other) const
Returns | an expression of the coefficient-wise != operator of *this and other |
---|
Example:
MatrixXi m(2,2); m << 1, 0, 1, 1; cout << "Comparing m with identity matrix:" << endl; cout << m.cwiseNotEqual(MatrixXi::Identity(2,2)) << endl; Index count = m.cwiseNotEqual(MatrixXi::Identity(2,2)).count(); cout << "Number of coefficients that are not equal: " << count << endl;
Output:
Comparing m with identity matrix: 0 0 1 0 Number of coefficients that are not equal: 1
template<typename Derived>
template<typename OtherDerived>
const CwiseBinaryOp<internal::scalar_product_op<Derived ::Scalar, OtherDerived ::Scalar>, const Derived, const OtherDerived> Eigen:: SparseMatrixBase<Derived>:: cwiseProduct(const Eigen:: SparseMatrixBase<OtherDerived>& other) const
Returns | an expression of the Schur product (coefficient wise product) of *this and other |
---|
Example:
Matrix3i a = Matrix3i::Random(), b = Matrix3i::Random(); Matrix3i c = a.cwiseProduct(b); cout << "a:\n" << a << "\nb:\n" << b << "\nc:\n" << c << endl;
Output:
a: 7 6 -3 -2 9 6 6 -6 -5 b: 1 -3 9 0 0 3 3 9 5 c: 7 -18 -27 0 0 18 18 -54 -25
template<typename Derived>
template<typename OtherDerived>
const CwiseProductDenseReturnType<OtherDerived>::Type Eigen:: SparseMatrixBase<Derived>:: cwiseProduct(const MatrixBase<OtherDerived>& other) const
template<typename Derived>
template<typename OtherDerived>
const SparseMatrixBase<Derived>::template CwiseProductDenseReturnType<OtherDerived>::Type Eigen:: SparseMatrixBase<Derived>:: cwiseProduct(const MatrixBase<OtherDerived>& other) const
template<typename Derived>
template<typename OtherDerived>
const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived> Eigen:: SparseMatrixBase<Derived>:: cwiseQuotient(const Eigen:: SparseMatrixBase<OtherDerived>& other) const
Returns | an expression of the coefficient-wise quotient of *this and other |
---|
Example:
Vector3d v(2,3,4), w(4,2,3); cout << v.cwiseQuotient(w) << endl;
Output:
0.5 1.5 1.33
template<typename Derived>
const CwiseSignReturnType Eigen:: SparseMatrixBase<Derived>:: cwiseSign() const
Returns | an expression of the coefficient-wise signum of *this. |
---|
Example:
MatrixXd m(2,3); m << 2, -4, 6, -5, 1, 0; cout << m.cwiseSign() << endl;
Output:
1 -1 1 -1 1 0
This method does not change the sparsity of *this
: the sign function is applied to explicitly stored coefficients only.
template<typename Derived>
const CwiseSqrtReturnType Eigen:: SparseMatrixBase<Derived>:: cwiseSqrt() const
Returns | an expression of the coefficient-wise square root of *this. |
---|
Example:
Vector3d v(1,2,4); cout << v.cwiseSqrt() << endl;
Output:
1 1.41 2
This method does not change the sparsity of *this
: the square-root is applied to explicitly stored coefficients only.
template<typename Derived>
template<typename OtherDerived>
internal::traits<Derived>::Scalar Eigen:: SparseMatrixBase<Derived>:: dot(const MatrixBase<OtherDerived>& other) const
template<typename Derived>
template<typename OtherDerived>
internal::traits<Derived>::Scalar Eigen:: SparseMatrixBase<Derived>:: dot(const SparseMatrixBase<OtherDerived>& other) const
template<typename Derived>
template<typename OtherDerived>
Scalar Eigen:: SparseMatrixBase<Derived>:: dot(const MatrixBase<OtherDerived>& other) const
template<typename Derived>
template<typename OtherDerived>
Scalar Eigen:: SparseMatrixBase<Derived>:: dot(const SparseMatrixBase<OtherDerived>& other) const
template<typename Derived>
const internal::eval<Derived>::type Eigen:: SparseMatrixBase<Derived>:: eval() const
Returns | the matrix or vector obtained by evaluating this expression. |
---|
Notice that in the case of a plain matrix or vector (not an expression) this function just returns a const reference, in order to avoid a useless copy.
template<typename Derived>
template<typename NType>
FixedSegmentReturnType<...>::Type Eigen:: SparseMatrixBase<Derived>:: head(NType n)
Template parameters | |
---|---|
NType | the type of the value handling the number of coefficients in the segment, typically Index. |
Parameters | |
n | the number of coefficients in the segment |
Returns | an expression of the first coefficients of *this with either dynamic or fixed sizes. |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
Example:
RowVector4i v = RowVector4i::Random(); cout << "Here is the vector v:" << endl << v << endl; cout << "Here is v.head(2):" << endl << v.head(2) << endl; v.head(2).setZero(); cout << "Now the vector v is:" << endl << v << endl;
Output:
Here is the vector v: 7 -2 6 6 Here is v.head(2): 7 -2 Now the vector v is: 0 0 6 6
The number of coefficients n can also be specified at compile-time by passing Eigen::
template<typename Derived>
template<typename NType>
const ConstFixedSegmentReturnType<...>::Type Eigen:: SparseMatrixBase<Derived>:: head(NType n) const
This is the const version of head(NType).
template<typename Derived>
template<int N>
FixedSegmentReturnType<N>::Type Eigen:: SparseMatrixBase<Derived>:: head(Index n = N)
Template parameters | |
---|---|
N | the number of coefficients in the segment as specified at compile-time |
Parameters | |
n | the number of coefficients in the segment as specified at run-time |
Returns | a fixed-size expression of the first coefficients of *this . |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.
Example:
RowVector4i v = RowVector4i::Random(); cout << "Here is the vector v:" << endl << v << endl; cout << "Here is v.head(2):" << endl << v.head<2>() << endl; v.head<2>().setZero(); cout << "Now the vector v is:" << endl << v << endl;
Output:
Here is the vector v: 7 -2 6 6 Here is v.head(2): 7 -2 Now the vector v is: 0 0 6 6
template<typename Derived>
template<int N>
ConstFixedSegmentReturnType<N>::Type Eigen:: SparseMatrixBase<Derived>:: head(Index n = N) const
This is the const version of head<int>().
template<typename Derived>
const ImagReturnType Eigen:: SparseMatrixBase<Derived>:: imag() const
Returns | an read-only expression of the imaginary part of *this . |
---|
This method does not change the sparsity of *this
: the imaginary part function is applied to explicitly stored coefficients only.
template<typename Derived>
NonConstImagReturnType Eigen:: SparseMatrixBase<Derived>:: imag()
Returns | a non const expression of the imaginary part of *this . |
---|
This method does not change the sparsity of *this
: the imaginary part function is applied to explicitly stored coefficients only.
template<typename Derived>
InnerVectorReturnType Eigen:: SparseMatrixBase<Derived>:: innerVector(Index outer)
Returns | the outer -th column (resp. row) of the matrix *this if *this is col-major (resp. row-major). |
---|
template<typename Derived>
const ConstInnerVectorReturnType Eigen:: SparseMatrixBase<Derived>:: innerVector(Index outer) const
Returns | the outer -th column (resp. row) of the matrix *this if *this is col-major (resp. row-major). Read-only. |
---|
template<typename Derived>
InnerVectorsReturnType Eigen:: SparseMatrixBase<Derived>:: innerVectors(Index outerStart,
Index outerSize)
Returns | the outer -th column (resp. row) of the matrix *this if *this is col-major (resp. row-major). |
---|
template<typename Derived>
const ConstInnerVectorsReturnType Eigen:: SparseMatrixBase<Derived>:: innerVectors(Index outerStart,
Index outerSize) const
Returns | the outer -th column (resp. row) of the matrix *this if *this is col-major (resp. row-major). Read-only. |
---|
template<typename Derived>
template<typename OtherDerived>
bool Eigen:: SparseMatrixBase<Derived>:: isApprox(const SparseMatrixBase<OtherDerived>& other,
const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
template<typename Derived>
template<typename OtherDerived>
bool Eigen:: SparseMatrixBase<Derived>:: isApprox(const MatrixBase<OtherDerived>& other,
const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
template<typename Derived>
bool Eigen:: SparseMatrixBase<Derived>:: isRValue() const
template<typename Derived>
bool Eigen:: SparseMatrixBase<Derived>:: isVector() const
Returns | true if either the number of rows or the number of columns is equal to 1. In other words, this function returns rows()==1 || cols()==1 |
---|
template<typename Derived>
template<typename NColsType>
NColsBlockXpr<...>::Type Eigen:: SparseMatrixBase<Derived>:: leftCols(NColsType n)
Template parameters | |
---|---|
NColsType | the type of the value handling the number of columns in the block, typically Index. |
Parameters | |
n | the number of columns in the block |
Returns | a block consisting of the left columns of *this . |
Example:
Array44i a = Array44i::Random(); cout << "Here is the array a:" << endl << a << endl; cout << "Here is a.leftCols(2):" << endl; cout << a.leftCols(2) << endl; a.leftCols(2).setZero(); cout << "Now the array a is:" << endl << a << endl;
Output:
Here is the array a: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is a.leftCols(2): 7 9 -2 -6 6 -3 6 6 Now the array a is: 0 0 -5 -3 0 0 1 0 0 0 0 9 0 0 3 9
The number of columns n can also be specified at compile-time by passing Eigen::
template<typename Derived>
template<typename NColsType>
const ConstNColsBlockXpr<...>::Type Eigen:: SparseMatrixBase<Derived>:: leftCols(NColsType n) const
This is the const version of leftCols(NColsType).
template<typename Derived>
template<int N>
NColsBlockXpr<N>::Type Eigen:: SparseMatrixBase<Derived>:: leftCols(Index n = N)
Template parameters | |
---|---|
N | the number of columns in the block as specified at compile-time |
Parameters | |
n | the number of columns in the block as specified at run-time |
Returns | a block consisting of the left columns of *this . |
The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.
Example:
Array44i a = Array44i::Random(); cout << "Here is the array a:" << endl << a << endl; cout << "Here is a.leftCols<2>():" << endl; cout << a.leftCols<2>() << endl; a.leftCols<2>().setZero(); cout << "Now the array a is:" << endl << a << endl;
Output:
Here is the array a: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is a.leftCols<2>(): 7 9 -2 -6 6 -3 6 6 Now the array a is: 0 0 -5 -3 0 0 1 0 0 0 0 9 0 0 3 9
template<typename Derived>
template<int N>
ConstNColsBlockXpr<N>::Type Eigen:: SparseMatrixBase<Derived>:: leftCols(Index n = N) const
This is the const version of leftCols<int>().
template<typename Derived>
Derived& Eigen:: SparseMatrixBase<Derived>:: markAsRValue()
template<typename Derived>
template<typename NColsType>
NColsBlockXpr<...>::Type Eigen:: SparseMatrixBase<Derived>:: middleCols(Index startCol,
NColsType numCols)
Template parameters | |
---|---|
NColsType | the type of the value handling the number of columns in the block, typically Index. |
Parameters | |
startCol | the index of the first column in the block |
numCols | the number of columns in the block |
Returns | a block consisting of a range of columns of *this . |
Example:
#include <Eigen/Core> #include <iostream> using namespace Eigen; using namespace std; int main(void) { int const N = 5; MatrixXi A(N,N); A.setRandom(); cout << "A =\n" << A << '\n' << endl; cout << "A(1..3,:) =\n" << A.middleCols(1,3) << endl; return 0; }
Output:
A = 7 -6 0 9 -10 -2 -3 3 3 -5 6 6 -3 5 -8 6 -5 0 -8 6 9 1 9 2 -7 A(1..3,:) = -6 0 9 -3 3 3 6 -3 5 -5 0 -8 1 9 2
The number of columns n can also be specified at compile-time by passing Eigen::
template<typename Derived>
template<typename NColsType>
const ConstNColsBlockXpr<...>::Type Eigen:: SparseMatrixBase<Derived>:: middleCols(Index startCol,
NColsType numCols) const
This is the const version of middleCols(Index,NColsType).
template<typename Derived>
template<int N>
NColsBlockXpr<N>::Type Eigen:: SparseMatrixBase<Derived>:: middleCols(Index startCol,
Index n = N)
Template parameters | |
---|---|
N | the number of columns in the block as specified at compile-time |
Parameters | |
startCol | the index of the first column in the block |
n | the number of columns in the block as specified at run-time |
Returns | a block consisting of a range of columns of *this . |
The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.
Example:
#include <Eigen/Core> #include <iostream> using namespace Eigen; using namespace std; int main(void) { int const N = 5; MatrixXi A(N,N); A.setRandom(); cout << "A =\n" << A << '\n' << endl; cout << "A(:,1..3) =\n" << A.middleCols<3>(1) << endl; return 0; }
Output:
A = 7 -6 0 9 -10 -2 -3 3 3 -5 6 6 -3 5 -8 6 -5 0 -8 6 9 1 9 2 -7 A(:,1..3) = -6 0 9 -3 3 3 6 -3 5 -5 0 -8 1 9 2
template<typename Derived>
template<int N>
ConstNColsBlockXpr<N>::Type Eigen:: SparseMatrixBase<Derived>:: middleCols(Index startCol,
Index n = N) const
This is the const version of middleCols<int>().
template<typename Derived>
template<typename NRowsType>
NRowsBlockXpr<...>::Type Eigen:: SparseMatrixBase<Derived>:: middleRows(Index startRow,
NRowsType n)
Template parameters | |
---|---|
NRowsType | the type of the value handling the number of rows in the block, typically Index. |
Parameters | |
startRow | the index of the first row in the block |
n | the number of rows in the block |
Returns | a block consisting of a range of rows of *this . |
Example:
#include <Eigen/Core> #include <iostream> using namespace Eigen; using namespace std; int main(void) { int const N = 5; MatrixXi A(N,N); A.setRandom(); cout << "A =\n" << A << '\n' << endl; cout << "A(2..3,:) =\n" << A.middleRows(2,2) << endl; return 0; }
Output:
A = 7 -6 0 9 -10 -2 -3 3 3 -5 6 6 -3 5 -8 6 -5 0 -8 6 9 1 9 2 -7 A(2..3,:) = 6 6 -3 5 -8 6 -5 0 -8 6
The number of rows n can also be specified at compile-time by passing Eigen::
template<typename Derived>
template<typename NRowsType>
const ConstNRowsBlockXpr<...>::Type Eigen:: SparseMatrixBase<Derived>:: middleRows(Index startRow,
NRowsType n) const
This is the const version of middleRows(Index,NRowsType).
template<typename Derived>
template<int N>
NRowsBlockXpr<N>::Type Eigen:: SparseMatrixBase<Derived>:: middleRows(Index startRow,
Index n = N)
Template parameters | |
---|---|
N | the number of rows in the block as specified at compile-time |
Parameters | |
startRow | the index of the first row in the block |
n | the number of rows in the block as specified at run-time |
Returns | a block consisting of a range of rows of *this . |
The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.
Example:
#include <Eigen/Core> #include <iostream> using namespace Eigen; using namespace std; int main(void) { int const N = 5; MatrixXi A(N,N); A.setRandom(); cout << "A =\n" << A << '\n' << endl; cout << "A(1..3,:) =\n" << A.middleRows<3>(1) << endl; return 0; }
Output:
A = 7 -6 0 9 -10 -2 -3 3 3 -5 6 6 -3 5 -8 6 -5 0 -8 6 9 1 9 2 -7 A(1..3,:) = -2 -3 3 3 -5 6 6 -3 5 -8 6 -5 0 -8 6
template<typename Derived>
template<int N>
ConstNRowsBlockXpr<N>::Type Eigen:: SparseMatrixBase<Derived>:: middleRows(Index startRow,
Index n = N) const
This is the const version of middleRows<int>().
template<typename Derived>
RealScalar Eigen:: SparseMatrixBase<Derived>:: norm() const
template<typename Derived>
template<typename OtherDerived>
const CwiseBinaryOp<internal::scalar_boolean_and_op, const Derived, const OtherDerived> Eigen:: SparseMatrixBase<Derived>:: operator&&(const Eigen:: SparseMatrixBase<OtherDerived>& other) const
Returns | an expression of the coefficient-wise boolean and operator of *this and other |
---|
Example:
Array3d v(-1,2,1), w(-3,2,3); cout << ((v<w) && (v<0)) << endl;
Output:
0 0 0
template<typename Derived>
template<typename T>
const CwiseBinaryOp<internal::scalar_product_op<Scalar, T>, Derived, Constant<T>> Eigen:: SparseMatrixBase<Derived>:: operator*(const T& scalar) const
Template parameters | |
---|---|
T | is the scalar type of scalar. It must be compatible with the scalar type of the given expression. |
Returns | an expression of *this scaled by the scalar factor scalar |
template<typename Derived>
template<typename OtherDerived>
const Product<Derived, OtherDerived, AliasFreeProduct> Eigen:: SparseMatrixBase<Derived>:: operator*(const SparseMatrixBase<OtherDerived>& other) const
Returns | an expression of the product of two sparse matrices. By default a conservative product preserving the symbolic non zeros is performed. The automatic pruning of the small values can be achieved by calling the pruned() function in which case a totally different product algorithm is employed: C = (A*B).pruned(); // suppress numerical zeros (exact) C = (A*B).pruned(ref); C = (A*B).pruned(ref,epsilon); where |
---|
template<typename Derived>
template<typename OtherDerived>
const Product<Derived, OtherDerived> Eigen:: SparseMatrixBase<Derived>:: operator*(const MatrixBase<OtherDerived>& other) const
template<typename Derived>
Derived& Eigen:: SparseMatrixBase<Derived>:: operator*=(const Scalar& other)
template<typename Derived>
template<typename OtherDerived>
Derived& Eigen:: SparseMatrixBase<Derived>:: operator*=(const SparseMatrixBase<OtherDerived>& other)
template<typename Derived>
template<typename OtherDerived>
const CwiseBinaryOp<sum<Scalar>, const Derived, const OtherDerived> Eigen:: SparseMatrixBase<Derived>:: operator+(const Eigen:: SparseMatrixBase<OtherDerived>& other) const
Returns | an expression of the sum of *this and other |
---|
template<typename Derived>
template<typename OtherDerived>
Derived& Eigen:: SparseMatrixBase<Derived>:: operator+=(const SparseMatrixBase<OtherDerived>& other)
template<typename Derived>
template<typename OtherDerived>
Derived& Eigen:: SparseMatrixBase<Derived>:: operator+=(const DiagonalBase<OtherDerived>& other)
template<typename Derived>
template<typename OtherDerived>
Derived& Eigen:: SparseMatrixBase<Derived>:: operator+=(const EigenBase<OtherDerived>& other)
template<typename Derived>
template<typename OtherDerived>
const CwiseBinaryOp<difference<Scalar>, const Derived, const OtherDerived> Eigen:: SparseMatrixBase<Derived>:: operator-(const Eigen:: SparseMatrixBase<OtherDerived>& other) const
Returns | an expression of the difference of *this and other |
---|
template<typename Derived>
const NegativeReturnType Eigen:: SparseMatrixBase<Derived>:: operator-() const
Returns | an expression of the opposite of *this |
---|
This method does not change the sparsity of *this
: the opposite is applied to explicitly stored coefficients only.
template<typename Derived>
template<typename OtherDerived>
Derived& Eigen:: SparseMatrixBase<Derived>:: operator-=(const SparseMatrixBase<OtherDerived>& other)
template<typename Derived>
template<typename OtherDerived>
Derived& Eigen:: SparseMatrixBase<Derived>:: operator-=(const DiagonalBase<OtherDerived>& other)
template<typename Derived>
template<typename OtherDerived>
Derived& Eigen:: SparseMatrixBase<Derived>:: operator-=(const EigenBase<OtherDerived>& other)
template<typename Derived>
template<typename T>
const CwiseBinaryOp<internal::scalar_quotient_op<Scalar, T>, Derived, Constant<T>> Eigen:: SparseMatrixBase<Derived>:: operator/(const T& scalar) const
Template parameters | |
---|---|
T | is the scalar type of scalar. It must be compatible with the scalar type of the given expression. |
Returns | an expression of *this divided by the scalar value scalar |
template<typename Derived>
Derived& Eigen:: SparseMatrixBase<Derived>:: operator/=(const Scalar& other)
template<typename Derived>
template<typename OtherDerived>
Derived& Eigen:: SparseMatrixBase<Derived>:: operator=(const ReturnByValue<OtherDerived>& other)
template<typename Derived>
template<typename OtherDerived>
Derived& Eigen:: SparseMatrixBase<Derived>:: operator=(const SparseMatrixBase<OtherDerived>& other)
template<typename Derived>
Derived& Eigen:: SparseMatrixBase<Derived>:: operator=(const Derived& other)
template<typename Derived>
template<typename OtherDerived>
const CwiseBinaryOp<internal::scalar_boolean_or_op, const Derived, const OtherDerived> Eigen:: SparseMatrixBase<Derived>:: operator||(const Eigen:: SparseMatrixBase<OtherDerived>& other) const
Returns | an expression of the coefficient-wise boolean or operator of *this and other |
---|
Example:
Array3d v(-1,2,1), w(-3,2,3); cout << ((v<w) || (v<0)) << endl;
Output:
1 0 1
template<typename Derived>
const SparseView<Derived> Eigen:: SparseMatrixBase<Derived>:: pruned(const Scalar& reference = Scalar(0),
const RealScalar& epsilon = NumTraits<Scalar>::dummy_precision()) const
Returns | an expression of *this with values smaller than reference * epsilon removed. |
---|
This method is typically used in conjunction with the product of two sparse matrices to automatically prune the smallest values as follows:
C = (A*B).pruned(); // suppress numerical zeros (exact) C = (A*B).pruned(ref); C = (A*B).pruned(ref,epsilon);
where ref
is a meaningful non zero reference value.
template<typename Derived>
RealReturnType Eigen:: SparseMatrixBase<Derived>:: real() const
Returns | a read-only expression of the real part of *this . |
---|
This method does not change the sparsity of *this
: the real part function is applied to explicitly stored coefficients only.
template<typename Derived>
NonConstRealReturnType Eigen:: SparseMatrixBase<Derived>:: real()
Returns | a non const expression of the real part of *this . |
---|
This method does not change the sparsity of *this
: the real part function is applied to explicitly stored coefficients only.
template<typename Derived>
template<typename NColsType>
NColsBlockXpr<...>::Type Eigen:: SparseMatrixBase<Derived>:: rightCols(NColsType n)
Template parameters | |
---|---|
NColsType | the type of the value handling the number of columns in the block, typically Index. |
Parameters | |
n | the number of columns in the block |
Returns | a block consisting of the right columns of *this . |
Example:
Array44i a = Array44i::Random(); cout << "Here is the array a:" << endl << a << endl; cout << "Here is a.rightCols(2):" << endl; cout << a.rightCols(2) << endl; a.rightCols(2).setZero(); cout << "Now the array a is:" << endl << a << endl;
Output:
Here is the array a: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is a.rightCols(2): -5 -3 1 0 0 9 3 9 Now the array a is: 7 9 0 0 -2 -6 0 0 6 -3 0 0 6 6 0 0
The number of columns n can also be specified at compile-time by passing Eigen::
template<typename Derived>
template<typename NColsType>
const ConstNColsBlockXpr<...>::Type Eigen:: SparseMatrixBase<Derived>:: rightCols(NColsType n) const
This is the const version of rightCols(NColsType).
template<typename Derived>
template<int N>
NColsBlockXpr<N>::Type Eigen:: SparseMatrixBase<Derived>:: rightCols(Index n = N)
Template parameters | |
---|---|
N | the number of columns in the block as specified at compile-time |
Parameters | |
n | the number of columns in the block as specified at run-time |
Returns | a block consisting of the right columns of *this . |
The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.
Example:
Array44i a = Array44i::Random(); cout << "Here is the array a:" << endl << a << endl; cout << "Here is a.rightCols<2>():" << endl; cout << a.rightCols<2>() << endl; a.rightCols<2>().setZero(); cout << "Now the array a is:" << endl << a << endl;
Output:
Here is the array a: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is a.rightCols<2>(): -5 -3 1 0 0 9 3 9 Now the array a is: 7 9 0 0 -2 -6 0 0 6 -3 0 0 6 6 0 0
template<typename Derived>
template<int N>
ConstNColsBlockXpr<N>::Type Eigen:: SparseMatrixBase<Derived>:: rightCols(Index n = N) const
This is the const version of rightCols<int>().
template<typename Derived>
template<typename NType>
FixedSegmentReturnType<...>::Type Eigen:: SparseMatrixBase<Derived>:: segment(Index start,
NType n)
Template parameters | |
---|---|
NType | the type of the value handling the number of coefficients in the segment, typically Index. |
Parameters | |
start | the first coefficient in the segment |
n | the number of coefficients in the segment |
Returns | an expression of a segment (i.e. a vector block) in *this with either dynamic or fixed sizes. |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
Example:
RowVector4i v = RowVector4i::Random(); cout << "Here is the vector v:" << endl << v << endl; cout << "Here is v.segment(1, 2):" << endl << v.segment(1, 2) << endl; v.segment(1, 2).setZero(); cout << "Now the vector v is:" << endl << v << endl;
Output:
Here is the vector v: 7 -2 6 6 Here is v.segment(1, 2): -2 6 Now the vector v is: 7 0 0 6
The number of coefficients n can also be specified at compile-time by passing Eigen::
template<typename Derived>
template<typename NType>
const ConstFixedSegmentReturnType<...>::Type Eigen:: SparseMatrixBase<Derived>:: segment(Index start,
NType n) const
This is the const version of segment(Index,NType).
template<typename Derived>
template<int N>
FixedSegmentReturnType<N>::Type Eigen:: SparseMatrixBase<Derived>:: segment(Index start,
Index n = N)
Template parameters | |
---|---|
N | the number of coefficients in the segment as specified at compile-time |
Parameters | |
start | the index of the first element in the segment |
n | the number of coefficients in the segment as specified at compile-time |
Returns | a fixed-size expression of a segment (i.e. a vector block) in *this |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.
Example:
RowVector4i v = RowVector4i::Random(); cout << "Here is the vector v:" << endl << v << endl; cout << "Here is v.segment<2>(1):" << endl << v.segment<2>(1) << endl; v.segment<2>(2).setZero(); cout << "Now the vector v is:" << endl << v << endl;
Output:
Here is the vector v: 7 -2 6 6 Here is v.segment<2>(1): -2 6 Now the vector v is: 7 -2 0 0
template<typename Derived>
template<unsigned int UpLo>
SparseMatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type Eigen:: SparseMatrixBase<Derived>:: selfadjointView() const
template<typename Derived>
template<unsigned int UpLo>
SparseMatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type Eigen:: SparseMatrixBase<Derived>:: selfadjointView()
template<typename Derived>
template<unsigned int UpLo>
ConstSelfAdjointViewReturnType<UpLo>::Type Eigen:: SparseMatrixBase<Derived>:: selfadjointView() const
template<typename Derived>
template<unsigned int UpLo>
SelfAdjointViewReturnType<UpLo>::Type Eigen:: SparseMatrixBase<Derived>:: selfadjointView()
template<typename Derived>
RealScalar Eigen:: SparseMatrixBase<Derived>:: squaredNorm() const
template<typename Derived>
template<DirectionType Direction>
internal::conditional<Direction==Vertical, ColXpr, RowXpr>::type Eigen:: SparseMatrixBase<Derived>:: subVector(Index i)
Returns | the i-th subvector (column or vector) according to the Direction |
---|
template<typename Derived>
template<DirectionType Direction>
internal::conditional<Direction==Vertical, ConstColXpr, ConstRowXpr>::type Eigen:: SparseMatrixBase<Derived>:: subVector(Index i) const
This is the const version of subVector(Index)
template<typename Derived>
template<DirectionType Direction>
Index Eigen:: SparseMatrixBase<Derived>:: subVectors() const
Returns | the number of subvectors (rows or columns) in the direction Direction |
---|
template<typename Derived>
Scalar Eigen:: SparseMatrixBase<Derived>:: sum() const
template<typename Derived>
template<typename NType>
FixedSegmentReturnType<...>::Type Eigen:: SparseMatrixBase<Derived>:: tail(NType n)
Template parameters | |
---|---|
NType | the type of the value handling the number of coefficients in the segment, typically Index. |
Parameters | |
n | the number of coefficients in the segment |
Returns | an expression of a last coefficients of *this with either dynamic or fixed sizes. |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
Example:
RowVector4i v = RowVector4i::Random(); cout << "Here is the vector v:" << endl << v << endl; cout << "Here is v.tail(2):" << endl << v.tail(2) << endl; v.tail(2).setZero(); cout << "Now the vector v is:" << endl << v << endl;
Output:
Here is the vector v: 7 -2 6 6 Here is v.tail(2): 6 6 Now the vector v is: 7 -2 0 0
The number of coefficients n can also be specified at compile-time by passing Eigen::
template<typename Derived>
template<typename NType>
const ConstFixedSegmentReturnType<...>::Type Eigen:: SparseMatrixBase<Derived>:: tail(NType n) const
This is the const version of tail(Index).
template<typename Derived>
template<int N>
FixedSegmentReturnType<N>::Type Eigen:: SparseMatrixBase<Derived>:: tail(Index n = N)
Template parameters | |
---|---|
N | the number of coefficients in the segment as specified at compile-time |
Parameters | |
n | the number of coefficients in the segment as specified at run-time |
Returns | a fixed-size expression of the last coefficients of *this . |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.
Example:
RowVector4i v = RowVector4i::Random(); cout << "Here is the vector v:" << endl << v << endl; cout << "Here is v.tail(2):" << endl << v.tail<2>() << endl; v.tail<2>().setZero(); cout << "Now the vector v is:" << endl << v << endl;
Output:
Here is the vector v: 7 -2 6 6 Here is v.tail(2): 6 6 Now the vector v is: 7 -2 0 0
template<typename Derived>
DenseMatrixType Eigen:: SparseMatrixBase<Derived>:: toDense() const
template<typename Derived>
template<typename NRowsType, typename NColsType>
FixedBlockXpr<...,...>::Type Eigen:: SparseMatrixBase<Derived>:: topLeftCorner(NRowsType cRows,
NColsType cCols)
Template parameters | |
---|---|
NRowsType | the type of the value handling the number of rows in the block, typically Index. |
NColsType | the type of the value handling the number of columns in the block, typically Index. |
Parameters | |
cRows | the number of rows in the corner |
cCols | the number of columns in the corner |
Returns | an expression of a top-left corner of *this with either dynamic or fixed sizes. |
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.topLeftCorner(2, 2):" << endl; cout << m.topLeftCorner(2, 2) << endl; m.topLeftCorner(2, 2).setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.topLeftCorner(2, 2): 7 9 -2 -6 Now the matrix m is: 0 0 -5 -3 0 0 1 0 6 -3 0 9 6 6 3 9
The number of rows blockRows and columns blockCols can also be specified at compile-time by passing Eigen::
template<typename Derived>
template<typename NRowsType, typename NColsType>
const ConstFixedBlockXpr<...,...>::Type Eigen:: SparseMatrixBase<Derived>:: topLeftCorner(NRowsType cRows,
NColsType cCols) const
This is the const version of topLeftCorner(Index, Index).
template<typename Derived>
template<int CRows, int CCols>
FixedBlockXpr<CRows, CCols>::Type Eigen:: SparseMatrixBase<Derived>:: topLeftCorner()
Returns | an expression of a fixed-size top-left corner of *this . |
---|
The template parameters CRows and CCols are the number of rows and columns in the corner.
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.topLeftCorner<2,2>():" << endl; cout << m.topLeftCorner<2,2>() << endl; m.topLeftCorner<2,2>().setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.topLeftCorner<2,2>(): 7 9 -2 -6 Now the matrix m is: 0 0 -5 -3 0 0 1 0 6 -3 0 9 6 6 3 9
template<typename Derived>
template<int CRows, int CCols>
const ConstFixedBlockXpr<CRows, CCols>::Type Eigen:: SparseMatrixBase<Derived>:: topLeftCorner() const
This is the const version of topLeftCorner<int, int>().
template<typename Derived>
template<int CRows, int CCols>
FixedBlockXpr<CRows, CCols>::Type Eigen:: SparseMatrixBase<Derived>:: topLeftCorner(Index cRows,
Index cCols)
Template parameters | |
---|---|
CRows | number of rows in corner as specified at compile-time |
CCols | number of columns in corner as specified at compile-time |
Parameters | |
cRows | number of rows in corner as specified at run-time |
cCols | number of columns in corner as specified at run-time |
Returns | an expression of a top-left corner of *this . |
This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.topLeftCorner<2,Dynamic>(2,2):" << endl; cout << m.topLeftCorner<2,Dynamic>(2,2) << endl; m.topLeftCorner<2,Dynamic>(2,2).setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.topLeftCorner<2,Dynamic>(2,2): 7 9 -2 -6 Now the matrix m is: 0 0 -5 -3 0 0 1 0 6 -3 0 9 6 6 3 9
template<typename Derived>
template<int CRows, int CCols>
const ConstFixedBlockXpr<CRows, CCols>::Type Eigen:: SparseMatrixBase<Derived>:: topLeftCorner(Index cRows,
Index cCols) const
This is the const version of topLeftCorner<int, int>(Index, Index).
template<typename Derived>
template<typename NRowsType, typename NColsType>
FixedBlockXpr<...,...>::Type Eigen:: SparseMatrixBase<Derived>:: topRightCorner(NRowsType cRows,
NColsType cCols)
Template parameters | |
---|---|
NRowsType | the type of the value handling the number of rows in the block, typically Index. |
NColsType | the type of the value handling the number of columns in the block, typically Index. |
Parameters | |
cRows | the number of rows in the corner |
cCols | the number of columns in the corner |
Returns | a expression of a top-right corner of *this with either dynamic or fixed sizes. |
Example with dynamic sizes:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.topRightCorner(2, 2):" << endl; cout << m.topRightCorner(2, 2) << endl; m.topRightCorner(2, 2).setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.topRightCorner(2, 2): -5 -3 1 0 Now the matrix m is: 7 9 0 0 -2 -6 0 0 6 -3 0 9 6 6 3 9
The number of rows blockRows and columns blockCols can also be specified at compile-time by passing Eigen::
template<typename Derived>
template<typename NRowsType, typename NColsType>
const ConstFixedBlockXpr<...,...>::Type Eigen:: SparseMatrixBase<Derived>:: topRightCorner(NRowsType cRows,
NColsType cCols) const
This is the const version of topRightCorner(NRowsType, NColsType).
template<typename Derived>
template<int CRows, int CCols>
FixedBlockXpr<CRows, CCols>::Type Eigen:: SparseMatrixBase<Derived>:: topRightCorner()
Template parameters | |
---|---|
CRows | the number of rows in the corner |
CCols | the number of columns in the corner |
Returns | an expression of a fixed-size top-right corner of *this . |
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.topRightCorner<2,2>():" << endl; cout << m.topRightCorner<2,2>() << endl; m.topRightCorner<2,2>().setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.topRightCorner<2,2>(): -5 -3 1 0 Now the matrix m is: 7 9 0 0 -2 -6 0 0 6 -3 0 9 6 6 3 9
template<typename Derived>
template<int CRows, int CCols>
const ConstFixedBlockXpr<CRows, CCols>::Type Eigen:: SparseMatrixBase<Derived>:: topRightCorner() const
This is the const version of topRightCorner<int, int>().
template<typename Derived>
template<int CRows, int CCols>
FixedBlockXpr<CRows, CCols>::Type Eigen:: SparseMatrixBase<Derived>:: topRightCorner(Index cRows,
Index cCols)
Template parameters | |
---|---|
CRows | number of rows in corner as specified at compile-time |
CCols | number of columns in corner as specified at compile-time |
Parameters | |
cRows | number of rows in corner as specified at run-time |
cCols | number of columns in corner as specified at run-time |
Returns | an expression of a top-right corner of *this . |
This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is m.topRightCorner<2,Dynamic>(2,2):" << endl; cout << m.topRightCorner<2,Dynamic>(2,2) << endl; m.topRightCorner<2,Dynamic>(2,2).setZero(); cout << "Now the matrix m is:" << endl << m << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is m.topRightCorner<2,Dynamic>(2,2): -5 -3 1 0 Now the matrix m is: 7 9 0 0 -2 -6 0 0 6 -3 0 9 6 6 3 9
template<typename Derived>
template<int CRows, int CCols>
const ConstFixedBlockXpr<CRows, CCols>::Type Eigen:: SparseMatrixBase<Derived>:: topRightCorner(Index cRows,
Index cCols) const
This is the const version of topRightCorner<int, int>(Index, Index).
template<typename Derived>
template<typename NRowsType>
NRowsBlockXpr<...>::Type Eigen:: SparseMatrixBase<Derived>:: topRows(NRowsType n)
Template parameters | |
---|---|
NRowsType | the type of the value handling the number of rows in the block, typically Index. |
Parameters | |
n | the number of rows in the block |
Returns | a block consisting of the top rows of *this . |
Example:
Array44i a = Array44i::Random(); cout << "Here is the array a:" << endl << a << endl; cout << "Here is a.topRows(2):" << endl; cout << a.topRows(2) << endl; a.topRows(2).setZero(); cout << "Now the array a is:" << endl << a << endl;
Output:
Here is the array a: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is a.topRows(2): 7 9 -5 -3 -2 -6 1 0 Now the array a is: 0 0 0 0 0 0 0 0 6 -3 0 9 6 6 3 9
The number of rows n can also be specified at compile-time by passing Eigen::
template<typename Derived>
template<typename NRowsType>
const ConstNRowsBlockXpr<...>::Type Eigen:: SparseMatrixBase<Derived>:: topRows(NRowsType n) const
This is the const version of topRows(NRowsType).
template<typename Derived>
template<int N>
NRowsBlockXpr<N>::Type Eigen:: SparseMatrixBase<Derived>:: topRows(Index n = N)
Template parameters | |
---|---|
N | the number of rows in the block as specified at compile-time |
Parameters | |
n | the number of rows in the block as specified at run-time |
Returns | a block consisting of the top rows of *this . |
The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.
Example:
Array44i a = Array44i::Random(); cout << "Here is the array a:" << endl << a << endl; cout << "Here is a.topRows<2>():" << endl; cout << a.topRows<2>() << endl; a.topRows<2>().setZero(); cout << "Now the array a is:" << endl << a << endl;
Output:
Here is the array a: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here is a.topRows<2>(): 7 9 -5 -3 -2 -6 1 0 Now the array a is: 0 0 0 0 0 0 0 0 6 -3 0 9 6 6 3 9
template<typename Derived>
template<int N>
ConstNRowsBlockXpr<N>::Type Eigen:: SparseMatrixBase<Derived>:: topRows(Index n = N) const
This is the const version of topRows<int>().
template<typename Derived>
TransposeReturnType Eigen:: SparseMatrixBase<Derived>:: transpose()
template<typename Derived>
const ConstTransposeReturnType Eigen:: SparseMatrixBase<Derived>:: transpose() const
template<typename Derived>
template<int Mode>
const TriangularView<const Derived, Mode> Eigen:: SparseMatrixBase<Derived>:: triangularView() const
template<typename Derived>
SparseSymmetricPermutationProduct<Derived, Upper|Lower> Eigen:: SparseMatrixBase<Derived>:: twistedBy(const PermutationMatrix<Dynamic, Dynamic, StorageIndex>& perm) const
Returns | an expression of P H P^-1 where H is the matrix represented by *this |
---|
template<typename Derived>
template<typename CustomUnaryOp>
const CwiseUnaryOp<CustomUnaryOp, const Derived> Eigen:: SparseMatrixBase<Derived>:: unaryExpr(const CustomUnaryOp& func = CustomUnaryOp()) const
Apply a unary operator coefficient-wise.
Template parameters | |
---|---|
CustomUnaryOp | Type of func |
Parameters | |
func in | Functor implementing the unary operator |
Returns | An expression of a custom coefficient-wise unary operator func of *this |
The function ptr_fun()
from the C++ standard library can be used to make functors out of normal functions.
Example:
#include <Eigen/Core> #include <iostream> using namespace Eigen; using namespace std; // define function to be applied coefficient-wise double ramp(double x) { if (x > 0) return x; else return 0; } int main(int, char**) { Matrix4d m1 = Matrix4d::Random(); cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(ptr_fun(ramp)) << endl; return 0; }
Output:
0.68 0.823 -0.444 -0.27 -0.211 -0.605 0.108 0.0268 0.566 -0.33 -0.0452 0.904 0.597 0.536 0.258 0.832 becomes: 0.68 0.823 0 0 0 0 0.108 0.0268 0.566 0 0 0.904 0.597 0.536 0.258 0.832
Genuine functors allow for more possibilities, for instance it may contain a state.
Example:
#include <Eigen/Core> #include <iostream> using namespace Eigen; using namespace std; // define a custom template unary functor template<typename Scalar> struct CwiseClampOp { CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {} const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); } Scalar m_inf, m_sup; }; int main(int, char**) { Matrix4d m1 = Matrix4d::Random(); cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl; return 0; }
Output:
0.68 0.823 -0.444 -0.27 -0.211 -0.605 0.108 0.0268 0.566 -0.33 -0.0452 0.904 0.597 0.536 0.258 0.832 becomes: 0.5 0.5 -0.444 -0.27 -0.211 -0.5 0.108 0.0268 0.5 -0.33 -0.0452 0.5 0.5 0.5 0.258 0.5
This method does not change the sparsity of *this
: the unary function is applied to explicitly stored coefficients only.
template<typename Derived>
template<typename CustomViewOp>
const CwiseUnaryView<CustomViewOp, const Derived> Eigen:: SparseMatrixBase<Derived>:: unaryViewExpr(const CustomViewOp& func = CustomViewOp()) const
Returns | an expression of a custom coefficient-wise unary operator func of *this |
---|
The template parameter CustomUnaryOp is the type of the functor of the custom unary operator.
Example:
#include <Eigen/Core> #include <iostream> using namespace Eigen; using namespace std; // define a custom template unary functor template<typename Scalar> struct CwiseClampOp { CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {} const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); } Scalar m_inf, m_sup; }; int main(int, char**) { Matrix4d m1 = Matrix4d::Random(); cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl; return 0; }
Output:
0.68 0.823 -0.444 -0.27 -0.211 -0.605 0.108 0.0268 0.566 -0.33 -0.0452 0.904 0.597 0.536 0.258 0.832 becomes: 0.5 0.5 -0.444 -0.27 -0.211 -0.5 0.108 0.0268 0.5 -0.33 -0.0452 0.5 0.5 0.5 0.258 0.5
This method does not change the sparsity of *this
: the unary function is applied to explicitly stored coefficients only.
template<typename Derived>
static StorageIndex Eigen:: SparseMatrixBase<Derived>:: convert_index(const Index idx) protected
template<typename Derived>
template<typename OtherDerived>
Derived& Eigen:: SparseMatrixBase<Derived>:: assign(const OtherDerived& other) protected
template<typename Derived>
template<typename OtherDerived>
void Eigen:: SparseMatrixBase<Derived>:: assignGeneric(const OtherDerived& other) protected
template<typename Derived>
template<typename T>
const CwiseBinaryOp<internal::scalar_product_op<T, Scalar>, Constant<T>, Derived> operator*(const T& scalar,
const StorageBaseType& expr)
Template parameters | |
---|---|
T | is the scalar type of scalar. It must be compatible with the scalar type of the given expression. |
Returns | an expression of expr scaled by the scalar factor scalar |