template<typename _MatrixType, int _UpLo>
Eigen::LDLT class

Robust Cholesky decomposition of a matrix with pivoting.

Template parameters
_MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
_UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. The other triangular part won't be read.

Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite matrix $ A $ such that $ A = P^TLDL^*P $ , where P is a permutation matrix, L is lower triangular with a unit diagonal and D is a diagonal matrix.

The decomposition uses pivoting to ensure stability, so that L will have zeros in the bottom right rank(A) - n submatrix. Avoiding the square root on D also stabilizes the computation.

Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky decomposition to determine whether a system of equations has a solution.

This class supports the inplace decomposition mechanism.

Base classes

template<typename Derived>
class SolverBase
A base class for matrix decomposition and solvers.

Constructors, destructors, conversion operators

LDLT()
Default Constructor.
LDLT(Index size) explicit
Default Constructor with memory preallocation.
template<typename InputType>
LDLT(const EigenBase<InputType>& matrix) explicit
Constructor with decomposition.
template<typename InputType>
LDLT(EigenBase<InputType>& matrix) explicit
Constructs a LDLT factorization from a given matrix.

Public functions

auto adjoint() const -> const LDLT&
template<typename InputType>
auto compute(const EigenBase<InputType>& a) -> LDLT<MatrixType, _UpLo>&
auto info() const -> ComputationInfo
Reports whether previous computation was successful.
auto isNegative(void) const -> bool
auto isPositive() const -> bool
auto matrixL() const -> Traits::MatrixL
auto matrixLDLT() const -> const MatrixType&
auto matrixU() const -> Traits::MatrixU
template<typename Derived>
auto rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType, _UpLo>::RealScalar& sigma) -> LDLT<MatrixType, _UpLo>&
auto rcond() const -> RealScalar
auto reconstructedMatrix() const -> MatrixType
void setZero()
template<typename Rhs>
auto solve(const MatrixBase<Rhs>& b) const -> const Solve<LDLT, Rhs>
auto transpositionsP() const -> const TranspositionType&
auto vectorD() const -> Diagonal<const MatrixType>

Function documentation

template<typename _MatrixType, int _UpLo>
Eigen::LDLT<_MatrixType, _UpLo>::LDLT()

Default Constructor.

The default constructor is useful in cases in which the user intends to perform decompositions via LDLT::compute(const MatrixType&).

template<typename _MatrixType, int _UpLo>
Eigen::LDLT<_MatrixType, _UpLo>::LDLT(Index size) explicit

Default Constructor with memory preallocation.

Like the default constructor but with preallocation of the internal data according to the specified problem size.

template<typename _MatrixType, int _UpLo> template<typename InputType>
Eigen::LDLT<_MatrixType, _UpLo>::LDLT(const EigenBase<InputType>& matrix) explicit

Constructor with decomposition.

This calculates the decomposition for the input matrix.

template<typename _MatrixType, int _UpLo> template<typename InputType>
Eigen::LDLT<_MatrixType, _UpLo>::LDLT(EigenBase<InputType>& matrix) explicit

Constructs a LDLT factorization from a given matrix.

This overloaded constructor is provided for inplace decomposition when MatrixType is a Eigen::Ref.

template<typename _MatrixType, int _UpLo>
const LDLT& Eigen::LDLT<_MatrixType, _UpLo>::adjoint() const

Returns the adjoint of *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint.

This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as: x = decomposition.adjoint().solve(b)

template<typename _MatrixType, int _UpLo> template<typename InputType>
LDLT<MatrixType, _UpLo>& Eigen::LDLT<_MatrixType, _UpLo>::compute(const EigenBase<InputType>& a)

Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of matrix

template<typename _MatrixType, int _UpLo>
ComputationInfo Eigen::LDLT<_MatrixType, _UpLo>::info() const

Reports whether previous computation was successful.

Returns Success if computation was successful, NumericalIssue if the factorization failed because of a zero pivot.

template<typename _MatrixType, int _UpLo>
bool Eigen::LDLT<_MatrixType, _UpLo>::isNegative(void) const

Returns true if the matrix is negative (semidefinite)

template<typename _MatrixType, int _UpLo>
bool Eigen::LDLT<_MatrixType, _UpLo>::isPositive() const

Returns true if the matrix is positive (semidefinite)

template<typename _MatrixType, int _UpLo>
Traits::MatrixL Eigen::LDLT<_MatrixType, _UpLo>::matrixL() const

Returns a view of the lower triangular matrix L

template<typename _MatrixType, int _UpLo>
const MatrixType& Eigen::LDLT<_MatrixType, _UpLo>::matrixLDLT() const

Returns the internal LDLT decomposition matrix

TODO: document the storage layout

template<typename _MatrixType, int _UpLo>
Traits::MatrixU Eigen::LDLT<_MatrixType, _UpLo>::matrixU() const

Returns a view of the upper triangular matrix U

template<typename _MatrixType, int _UpLo> template<typename Derived>
LDLT<MatrixType, _UpLo>& Eigen::LDLT<_MatrixType, _UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType, _UpLo>::RealScalar& sigma)

Parameters
w a vector to be incorporated into the decomposition.
sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1.

Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T.

template<typename _MatrixType, int _UpLo>
RealScalar Eigen::LDLT<_MatrixType, _UpLo>::rcond() const

Returns an estimate of the reciprocal condition number of the matrix of which *this is the LDLT decomposition.

template<typename _MatrixType, int _UpLo>
MatrixType Eigen::LDLT<_MatrixType, _UpLo>::reconstructedMatrix() const

Returns the matrix represented by the decomposition, i.e., it returns the product: P^T L D L^* P. This function is provided for debug purpose.

template<typename _MatrixType, int _UpLo>
void Eigen::LDLT<_MatrixType, _UpLo>::setZero()

Clear any existing decomposition

template<typename _MatrixType, int _UpLo> template<typename Rhs>
const Solve<LDLT, Rhs> Eigen::LDLT<_MatrixType, _UpLo>::solve(const MatrixBase<Rhs>& b) const

Returns a solution x of $ A x = b $ using the current decomposition of A.

This function also supports in-place solves using the syntax x = decompositionObject.solve(x) .

This method just tries to find as good a solution as possible. If you want to check whether a solution exists or if it is accurate, just call this function to get a result and then compute the error of this result, or use MatrixBase::isApprox() directly, for instance like this: bool a_solution_exists = (A*result).isApprox(b, precision); This method avoids dividing by zero, so that the non-existence of a solution doesn't by itself mean that you'll get inf or nan values.

More precisely, this method solves $ A x = b $ using the decomposition $ A = P^T L D L^* P $ by solving the systems $ P^T y_1 = b $ , $ L y_2 = y_1 $ , $ D y_3 = y_2 $ , $ L^* y_4 = y_3 $ and $ P x = y_4 $ in succession. If the matrix $ A $ is singular, then $ D $ will also be singular (all the other matrices are invertible). In that case, the least-square solution of $ D y_3 = y_2 $ is computed. This does not mean that this function computes the least-square solution of $ A x = b $ is $ A $ is singular.

template<typename _MatrixType, int _UpLo>
const TranspositionType& Eigen::LDLT<_MatrixType, _UpLo>::transpositionsP() const

Returns the permutation matrix P as a transposition sequence.

template<typename _MatrixType, int _UpLo>
Diagonal<const MatrixType> Eigen::LDLT<_MatrixType, _UpLo>::vectorD() const

Returns the coefficients of the diagonal matrix D