template<typename _Scalar, int _Dim, int _Mode, int _Options>
Transform class
Represents an homogeneous transformation in a N dimensional space.
Template parameters | |
---|---|
_Scalar | the scalar type, i.e., the type of the coefficients |
_Dim | the dimension of the space |
_Mode | the type of the transformation. Can be:
|
_Options | has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor. These Options are passed directly to the underlying matrix type. |
Contents
This is defined in the Geometry module. #include <Eigen/Geometry>
The homography is internally represented and stored by a matrix which is available through the matrix() method. To understand the behavior of this class you have to think a Transform object as its internal matrix representation. The chosen convention is right multiply:
v' = T * v
Therefore, an affine transformation matrix M is shaped like this:
Note that for a projective transformation the last row can be anything, and then the interpretation of different parts might be slightly different.
However, unlike a plain matrix, the Transform class provides many features simplifying both its assembly and usage. In particular, it can be composed with any other transformations (Transform,Translation,RotationBase,DiagonalMatrix) and can be directly used to transform implicit homogeneous vectors. All these operations are handled via the operator*. For the composition of transformations, its principle consists to first convert the right/left hand sides of the product to a compatible (Dim+1)^2 matrix and then perform a pure matrix product. Of course, internally, operator* tries to perform the minimal number of operations according to the nature of each terms. Likewise, when applying the transform to points, the latters are automatically promoted to homogeneous vectors before doing the matrix product. The conventions to homogeneous representations are performed as follow:
Translation t (Dim)x(1):
Rotation R (Dim)x(Dim):
Scaling DiagonalMatrix S (Dim)x(Dim):
Column point v (Dim)x(1):
Set of column points V1...Vn (Dim)x(n):
The concatenation of a Transform object with any kind of other transformation always returns a Transform object.
A little exception to the "as pure matrix product" rule is the case of the transformation of non homogeneous vectors by an affine transformation. In that case the last matrix row can be ignored, and the product returns non homogeneous vectors.
Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation, it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix. The solution is either to use a Dim x Dynamic matrix or explicitly request a vector transformation by making the vector homogeneous: m' = T * m.colwise().homogeneous();
Note that there is zero overhead.
Conversion methods from/to Qt's QMatrix and QTransform are available if the preprocessor token EIGEN_QT_SUPPORT is defined.
This class can be extended with the help of the plugin mechanism described on the page Extending MatrixBase (and other classes) by defining the preprocessor symbol EIGEN_TRANSFORM_PLUGIN
.
Public types
- enum (anonymous) { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) }
- using AffinePart = internal::conditional<int(Mode)==int(AffineCompact), MatrixType&, Block<MatrixType, Dim, HDim>>::type
- using ConstAffinePart = internal::conditional<int(Mode)==int(AffineCompact), const MatrixType&, const Block<const MatrixType, Dim, HDim>>::type
- using ConstLinearPart = const Block<ConstMatrixType, Dim, Dim, int(Mode)==(AffineCompact) && (Options&RowMajor)==0>
- using ConstMatrixType = const MatrixType
- using ConstTranslationPart = const Block<ConstMatrixType, Dim, 1,!(internal::traits<MatrixType>::Flags&RowMajorBit)>
-
using Index = Eigen::
Index deprecated - using LinearMatrixType = Matrix<Scalar, Dim, Dim, Options>
- using LinearPart = Block<MatrixType, Dim, Dim, int(Mode)==(AffineCompact) && (Options&RowMajor)==0>
- using MatrixType = internal::make_proper_matrix_type<Scalar, Rows, HDim, Options>::type
- using RotationReturnType = internal::conditional<int(Mode)==Isometry, ConstLinearPart, const LinearMatrixType>::type
- using Scalar = _Scalar
-
using StorageIndex = Eigen::
Index - using take_affine_part = internal::transform_take_affine_part<Transform>
- using TransformTimeDiagonalReturnType = Transform<Scalar, Dim, TransformTimeDiagonalMode>
- using TranslationPart = Block<MatrixType, Dim, 1,!(internal::traits<MatrixType>::Flags&RowMajorBit)>
- using TranslationType = Translation<Scalar, Dim>
- using VectorType = Matrix<Scalar, Dim, 1>
Public static functions
Constructors, destructors, conversion operators
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar, _Dim = =Dynamic ? Dynamic :(_Dim+1)*(_Dim+1)) enum
- Transform()
- Transform(const Transform& other)
- Transform(const TranslationType& t) explicit
- Transform(const UniformScaling<Scalar>& s) explicit
-
template<typename Derived>Transform(const RotationBase<Derived, Dim>& r) explicit
-
template<typename OtherDerived>Transform(const EigenBase<OtherDerived>& other) explicit
-
template<int OtherOptions>Transform(const Transform<Scalar, Dim, Mode, OtherOptions>& other)
-
template<int OtherMode, int OtherOptions>Transform(const Transform<Scalar, Dim, OtherMode, OtherOptions>& other)
-
template<typename OtherDerived>Transform(const ReturnByValue<OtherDerived>& other)
- Transform(const QMatrix& other)
- Transform(const QTransform& other)
-
template<typename OtherScalarType>Transform(const Transform<OtherScalarType, Dim, Mode, Options>& other) explicit
Public functions
- auto affine() const -> ConstAffinePart
- auto affine() -> AffinePart
-
template<typename NewScalarType>auto cast() const -> internal::cast_return_type<Transform, Transform<NewScalarType, Dim, Mode, Options>>::type
- auto cols() const -> Index
-
template<typename RotationMatrixType, typename ScalingMatrixType>void computeRotationScaling(RotationMatrixType* rotation, ScalingMatrixType* scaling) const
-
template<typename ScalingMatrixType, typename RotationMatrixType>void computeScalingRotation(ScalingMatrixType* scaling, RotationMatrixType* rotation) const
- auto data() const -> const Scalar*
- auto data() -> Scalar*
-
template<typename PositionDerived, typename OrientationType, typename ScaleDerived>auto fromPositionOrientationScale(const MatrixBase<PositionDerived>& position, const OrientationType& orientation, const MatrixBase<ScaleDerived>& scale) -> Transform&
-
template<typename PositionDerived, typename OrientationType, typename ScaleDerived>auto fromPositionOrientationScale(const MatrixBase<PositionDerived>& position, const OrientationType& orientation, const MatrixBase<ScaleDerived>& scale) -> Transform<Scalar, Dim, Mode, Options>&
- auto inverse(TransformTraits traits = (TransformTraits) Mode) const -> Transform
- auto isApprox(const Transform& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const -> bool
- auto linear() const -> ConstLinearPart
- auto linear() -> LinearPart
- auto linearExt() -> Block<MatrixType, int(Mode)==int(Projective)?HDim:Dim, Dim>
- auto linearExt() const -> const Block<MatrixType, int(Mode)==int(Projective)?HDim:Dim, Dim>
- void makeAffine()
- auto matrix() const -> const MatrixType&
- auto matrix() -> MatrixType&
-
template<typename OtherDerived>auto operator*(const EigenBase<OtherDerived>& other) const -> const internal::transform_right_product_impl<Transform, OtherDerived>::ResultType
-
template<typename DiagonalDerived>auto operator*(const DiagonalBase<DiagonalDerived>& b) const -> const TransformTimeDiagonalReturnType
- auto operator*(const Transform& other) const -> const Transform
-
template<int OtherMode, int OtherOptions>auto operator*(const Transform<Scalar, Dim, OtherMode, OtherOptions>& other) const -> internal::transform_transform_product_impl<Transform, Transform<Scalar, Dim, OtherMode, OtherOptions>>::ResultType
- auto operator*(const TranslationType& t) const -> Transform
- auto operator*(const UniformScaling<Scalar>& s) const -> TransformTimeDiagonalReturnType
-
template<typename Derived>auto operator*(const RotationBase<Derived, Dim>& r) const -> Transform
-
template<typename Derived>auto operator*(const RotationBase<Derived, Dim>& r) const -> Transform<Scalar, Dim, Mode, Options>
-
template<typename OtherDerived>auto operator*=(const EigenBase<OtherDerived>& other) -> Transform&
- auto operator*=(const TranslationType& t) -> Transform&
- auto operator*=(const UniformScaling<Scalar>& s) -> Transform&
- auto operator*=(const DiagonalMatrix<Scalar, Dim>& s) -> Transform&
-
template<typename Derived>auto operator*=(const RotationBase<Derived, Dim>& r) -> Transform&
- auto operator()(Index row, Index col) const -> Scalar
- auto operator()(Index row, Index col) -> Scalar&
- auto operator=(const Transform& other) -> Transform&
-
template<typename OtherDerived>auto operator=(const EigenBase<OtherDerived>& other) -> Transform&
-
template<typename OtherDerived>auto operator=(const ReturnByValue<OtherDerived>& other) -> Transform&
- auto operator=(const QMatrix& other) -> Transform&
- auto operator=(const QTransform& other) -> Transform&
- auto operator=(const TranslationType& t) -> Transform&
- auto operator=(const UniformScaling<Scalar>& t) -> Transform&
-
template<typename Derived>auto operator=(const RotationBase<Derived, Dim>& r) -> Transform&
-
template<typename Derived>auto operator=(const RotationBase<Derived, Dim>& r) -> Transform<Scalar, Dim, Mode, Options>&
-
template<typename RotationType>auto prerotate(const RotationType& rotation) -> Transform&
-
template<typename RotationType>auto prerotate(const RotationType& rotation) -> Transform<Scalar, Dim, Mode, Options>&
-
template<typename OtherDerived>auto prescale(const MatrixBase<OtherDerived>& other) -> Transform&
- auto prescale(const Scalar& s) -> Transform&
-
template<typename OtherDerived>auto prescale(const MatrixBase<OtherDerived>& other) -> Transform<Scalar, Dim, Mode, Options>&
- auto preshear(const Scalar& sx, const Scalar& sy) -> Transform&
-
template<typename OtherDerived>auto pretranslate(const MatrixBase<OtherDerived>& other) -> Transform&
-
template<typename OtherDerived>auto pretranslate(const MatrixBase<OtherDerived>& other) -> Transform<Scalar, Dim, Mode, Options>&
-
template<typename RotationType>auto rotate(const RotationType& rotation) -> Transform&
-
template<typename RotationType>auto rotate(const RotationType& rotation) -> Transform<Scalar, Dim, Mode, Options>&
- auto rotation() const -> RotationReturnType
- auto rows() const -> Index
-
template<typename OtherDerived>auto scale(const MatrixBase<OtherDerived>& other) -> Transform&
- auto scale(const Scalar& s) -> Transform&
-
template<typename OtherDerived>auto scale(const MatrixBase<OtherDerived>& other) -> Transform<Scalar, Dim, Mode, Options>&
- void setIdentity()
- auto shear(const Scalar& sx, const Scalar& sy) -> Transform&
- auto toQMatrix(void) const -> QMatrix
- auto toQTransform(void) const -> QTransform
-
template<typename OtherDerived>auto translate(const MatrixBase<OtherDerived>& other) -> Transform&
-
template<typename OtherDerived>auto translate(const MatrixBase<OtherDerived>& other) -> Transform<Scalar, Dim, Mode, Options>&
- auto translation() const -> ConstTranslationPart
- auto translation() -> TranslationPart
- auto translationExt() -> Block<MatrixType, int(Mode)==int(Projective)?HDim:Dim, 1>
- auto translationExt() const -> const Block<MatrixType, int(Mode)==int(Projective)?HDim:Dim, 1>
Protected variables
Friends
-
template<typename OtherDerived>auto operator*(const EigenBase<OtherDerived>& a, const Transform& b) -> const internal::transform_left_product_impl<OtherDerived, Mode, Options, _Dim, _Dim+1>::ResultType
-
template<typename DiagonalDerived>auto operator*(const DiagonalBase<DiagonalDerived>& a, const Transform& b) -> TransformTimeDiagonalReturnType
Enum documentation
template<typename _Scalar, int _Dim, int _Mode, int _Options>
enum Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: (anonymous)
Enumerators | |
---|---|
TransformTimeDiagonalMode |
Typedef documentation
template<typename _Scalar, int _Dim, int _Mode, int _Options>
typedef internal::conditional<int(Mode)==int(AffineCompact), MatrixType&, Block<MatrixType, Dim, HDim>>::type Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: AffinePart
type of read/write reference to the affine part of the transformation
template<typename _Scalar, int _Dim, int _Mode, int _Options>
typedef internal::conditional<int(Mode)==int(AffineCompact), const MatrixType&, const Block<const MatrixType, Dim, HDim>>::type Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: ConstAffinePart
type of read reference to the affine part of the transformation
template<typename _Scalar, int _Dim, int _Mode, int _Options>
typedef const Block<ConstMatrixType, Dim, Dim, int(Mode)==(AffineCompact) && (Options&RowMajor)==0> Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: ConstLinearPart
type of read reference to the linear part of the transformation
template<typename _Scalar, int _Dim, int _Mode, int _Options>
typedef const MatrixType Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: ConstMatrixType
constified MatrixType
template<typename _Scalar, int _Dim, int _Mode, int _Options>
typedef const Block<ConstMatrixType, Dim, 1,!(internal::traits<MatrixType>::Flags&RowMajorBit)> Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: ConstTranslationPart
type of a read reference to the translation part of the rotation
template<typename _Scalar, int _Dim, int _Mode, int _Options>
typedef Eigen:: Index Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: Index
template<typename _Scalar, int _Dim, int _Mode, int _Options>
typedef Matrix<Scalar, Dim, Dim, Options> Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: LinearMatrixType
type of the matrix used to represent the linear part of the transformation
template<typename _Scalar, int _Dim, int _Mode, int _Options>
typedef Block<MatrixType, Dim, Dim, int(Mode)==(AffineCompact) && (Options&RowMajor)==0> Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: LinearPart
type of read/write reference to the linear part of the transformation
template<typename _Scalar, int _Dim, int _Mode, int _Options>
typedef internal::make_proper_matrix_type<Scalar, Rows, HDim, Options>::type Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: MatrixType
type of the matrix used to represent the transformation
template<typename _Scalar, int _Dim, int _Mode, int _Options>
typedef internal::conditional<int(Mode)==Isometry, ConstLinearPart, const LinearMatrixType>::type Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: RotationReturnType
template<typename _Scalar, int _Dim, int _Mode, int _Options>
typedef _Scalar Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: Scalar
the scalar type of the coefficients
template<typename _Scalar, int _Dim, int _Mode, int _Options>
typedef Eigen:: Index Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: StorageIndex
template<typename _Scalar, int _Dim, int _Mode, int _Options>
typedef internal::transform_take_affine_part<Transform> Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: take_affine_part
template<typename _Scalar, int _Dim, int _Mode, int _Options>
typedef Transform<Scalar, Dim, TransformTimeDiagonalMode> Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: TransformTimeDiagonalReturnType
The return type of the product between a diagonal matrix and a transform
template<typename _Scalar, int _Dim, int _Mode, int _Options>
typedef Block<MatrixType, Dim, 1,!(internal::traits<MatrixType>::Flags&RowMajorBit)> Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: TranslationPart
type of a read/write reference to the translation part of the rotation
template<typename _Scalar, int _Dim, int _Mode, int _Options>
typedef Translation<Scalar, Dim> Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: TranslationType
corresponding translation type
template<typename _Scalar, int _Dim, int _Mode, int _Options>
typedef Matrix<Scalar, Dim, 1> Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: VectorType
type of a vector
Function documentation
template<typename _Scalar, int _Dim, int _Mode, int _Options>
Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,
_Dim = =Dynamic ? Dynamic :(_Dim+1)*(_Dim+1)) enum
< space dimension in which the transformation holds
< size of a respective homogeneous vector
template<typename _Scalar, int _Dim, int _Mode, int _Options>
Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: Transform()
Default constructor without initialization of the meaningful coefficients. If Mode==Affine or Mode==Isometry, then the last row is set to [0 ... 0 1]
template<typename _Scalar, int _Dim, int _Mode, int _Options>
Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: Transform(const TranslationType& t) explicit
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename Derived>
Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: Transform(const RotationBase<Derived, Dim>& r) explicit
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename OtherDerived>
Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: Transform(const ReturnByValue<OtherDerived>& other)
template<typename _Scalar, int _Dim, int _Mode, int _Options>
Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: Transform(const QMatrix& other)
Initializes *this
from a QMatrix assuming the dimension is 2.
This function is available only if the token EIGEN_QT_SUPPORT is defined.
template<typename _Scalar, int _Dim, int _Mode, int _Options>
Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: Transform(const QTransform& other)
Initializes *this
from a QTransform assuming the dimension is 2.
This function is available only if the token EIGEN_QT_SUPPORT is defined.
template<typename _Scalar, int _Dim, int _Mode, int _Options>
ConstAffinePart Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: affine() const
Returns | a read-only expression of the Dim x HDim affine part of the transformation |
---|
template<typename _Scalar, int _Dim, int _Mode, int _Options>
AffinePart Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: affine()
Returns | a writable expression of the Dim x HDim affine part of the transformation |
---|
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename NewScalarType>
internal::cast_return_type<Transform, Transform<NewScalarType, Dim, Mode, Options>>::type Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: cast() const
Returns | *this with scalar type casted to NewScalarType |
---|
Note that if NewScalarType is equal to the current scalar type of *this
then this function smartly returns a const reference to *this
.
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename RotationMatrixType, typename ScalingMatrixType>
void Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: computeRotationScaling(RotationMatrixType* rotation,
ScalingMatrixType* scaling) const
decomposes the linear part of the transformation as a product rotation x scaling, the scaling being not necessarily positive.
If either pointer is zero, the corresponding computation is skipped.
This is defined in the SVD module. #include <Eigen/SVD>
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename ScalingMatrixType, typename RotationMatrixType>
void Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: computeScalingRotation(ScalingMatrixType* scaling,
RotationMatrixType* rotation) const
decomposes the linear part of the transformation as a product scaling x rotation, the scaling being not necessarily positive.
If either pointer is zero, the corresponding computation is skipped.
This is defined in the SVD module. #include <Eigen/SVD>
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
Transform& Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: fromPositionOrientationScale(const MatrixBase<PositionDerived>& position,
const OrientationType& orientation,
const MatrixBase<ScaleDerived>& scale)
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
Transform<Scalar, Dim, Mode, Options>& Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: fromPositionOrientationScale(const MatrixBase<PositionDerived>& position,
const OrientationType& orientation,
const MatrixBase<ScaleDerived>& scale)
Convenient method to set *this
from a position, orientation and scale of a 3D object.
template<typename _Scalar, int _Dim, int _Mode, int _Options>
Transform Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: inverse(TransformTraits traits = (TransformTraits) Mode) const
Returns | the inverse transformation according to some given knowledge on *this . |
---|
template<typename _Scalar, int _Dim, int _Mode, int _Options>
bool Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: isApprox(const Transform& other,
const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
Returns | true if *this is approximately equal to other, within the precision determined by prec. |
---|
template<typename _Scalar, int _Dim, int _Mode, int _Options>
ConstLinearPart Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: linear() const
Returns | a read-only expression of the linear part of the transformation |
---|
template<typename _Scalar, int _Dim, int _Mode, int _Options>
LinearPart Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: linear()
Returns | a writable expression of the linear part of the transformation |
---|
template<typename _Scalar, int _Dim, int _Mode, int _Options>
Block<MatrixType, int(Mode)==int(Projective)?HDim:Dim, Dim> Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: linearExt()
template<typename _Scalar, int _Dim, int _Mode, int _Options>
const Block<MatrixType, int(Mode)==int(Projective)?HDim:Dim, Dim> Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: linearExt() const
template<typename _Scalar, int _Dim, int _Mode, int _Options>
void Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: makeAffine()
Sets the last row to [0 ... 0 1]
template<typename _Scalar, int _Dim, int _Mode, int _Options>
const MatrixType& Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: matrix() const
Returns | a read-only expression of the transformation matrix |
---|
template<typename _Scalar, int _Dim, int _Mode, int _Options>
MatrixType& Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: matrix()
Returns | a writable expression of the transformation matrix |
---|
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename OtherDerived>
const internal::transform_right_product_impl<Transform, OtherDerived>::ResultType Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: operator*(const EigenBase<OtherDerived>& other) const
Returns | an expression of the product between the transform *this and a matrix expression other. |
---|
The right-hand-side other can be either:
- an homogeneous vector of size Dim+1,
- a set of homogeneous vectors of size Dim+1 x N,
- a transformation matrix of size Dim+1 x Dim+1.
Moreover, if *this
represents an affine transformation (i.e., Mode!=Projective), then other can also be:
- a point of size Dim (computes:
this->linear() * other + this->translation()
), - a set of N points as a Dim x N matrix (computes:
(this->linear() * other).colwise() + this->translation()
),
In all cases, the return type is a matrix or vector of same sizes as the right-hand-side other.
If you want to interpret other as a linear or affine transformation, then first convert it to a Transform<> type, or do your own cooking.
Finally, if you want to apply Affine transformations to vectors, then explicitly apply the linear part only:
Affine3f A; Vector3f v1, v2; v2 = A.linear() * v1;
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename DiagonalDerived>
const TransformTimeDiagonalReturnType Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: operator*(const DiagonalBase<DiagonalDerived>& b) const
Returns | The product expression of a transform a times a diagonal matrix b |
---|
The rhs diagonal matrix is interpreted as an affine scaling transformation. The product results in a Transform of the same type (mode) as the lhs only if the lhs mode is no isometry. In that case, the returned transform is an affinity.
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<int OtherMode, int OtherOptions>
internal::transform_transform_product_impl<Transform, Transform<Scalar, Dim, OtherMode, OtherOptions>>::ResultType Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: operator*(const Transform<Scalar, Dim, OtherMode, OtherOptions>& other) const
Concatenates two different transformations
template<typename _Scalar, int _Dim, int _Mode, int _Options>
Transform Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: operator*(const TranslationType& t) const
template<typename _Scalar, int _Dim, int _Mode, int _Options>
TransformTimeDiagonalReturnType Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: operator*(const UniformScaling<Scalar>& s) const
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename Derived>
Transform Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: operator*(const RotationBase<Derived, Dim>& r) const
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename Derived>
Transform<Scalar, Dim, Mode, Options> Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: operator*(const RotationBase<Derived, Dim>& r) const
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename OtherDerived>
Transform& Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: operator*=(const EigenBase<OtherDerived>& other)
template<typename _Scalar, int _Dim, int _Mode, int _Options>
Transform& Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: operator*=(const TranslationType& t)
template<typename _Scalar, int _Dim, int _Mode, int _Options>
Transform& Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: operator*=(const UniformScaling<Scalar>& s)
template<typename _Scalar, int _Dim, int _Mode, int _Options>
Transform& Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: operator*=(const DiagonalMatrix<Scalar, Dim>& s)
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename Derived>
Transform& Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: operator*=(const RotationBase<Derived, Dim>& r)
template<typename _Scalar, int _Dim, int _Mode, int _Options>
Scalar Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: operator()(Index row,
Index col) const
shortcut for m_matrix(row,col);
template<typename _Scalar, int _Dim, int _Mode, int _Options>
Scalar& Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: operator()(Index row,
Index col)
shortcut for m_matrix(row,col);
template<typename _Scalar, int _Dim, int _Mode, int _Options>
Transform& Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: operator=(const TranslationType& t)
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename Derived>
Transform& Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: operator=(const RotationBase<Derived, Dim>& r)
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename Derived>
Transform<Scalar, Dim, Mode, Options>& Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: operator=(const RotationBase<Derived, Dim>& r)
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename RotationType>
Transform<Scalar, Dim, Mode, Options>& Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: prerotate(const RotationType& rotation)
Applies on the left the rotation represented by the rotation rotation to *this
and returns a reference to *this
.
See rotate() for further details.
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename OtherDerived>
Transform& Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: prescale(const MatrixBase<OtherDerived>& other)
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename OtherDerived>
Transform<Scalar, Dim, Mode, Options>& Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: prescale(const MatrixBase<OtherDerived>& other)
Applies on the left the non uniform scale transformation represented by the vector other to *this
and returns a reference to *this
.
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename OtherDerived>
Transform& Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: pretranslate(const MatrixBase<OtherDerived>& other)
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename OtherDerived>
Transform<Scalar, Dim, Mode, Options>& Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: pretranslate(const MatrixBase<OtherDerived>& other)
Applies on the left the translation matrix represented by the vector other to *this
and returns a reference to *this
.
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename RotationType>
Transform<Scalar, Dim, Mode, Options>& Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: rotate(const RotationType& rotation)
Applies on the right the rotation represented by the rotation rotation to *this
and returns a reference to *this
.
The template parameter RotationType is the type of the rotation which must be known by internal::toRotationMatrix<>.
Natively supported types includes:
- any scalar (2D),
- a Dim x Dim matrix expression,
- a Quaternion (3D),
- a AngleAxis (3D)
This mechanism is easily extendable to support user types such as Euler angles, or a pair of Quaternion for 4D rotations.
template<typename _Scalar, int _Dim, int _Mode, int _Options>
RotationReturnType Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: rotation() const
Returns | the rotation part of the transformation |
---|
If Mode==Isometry, then this method is an alias for linear(), otherwise it calls computeRotationScaling() to extract the rotation through a SVD decomposition.
This is defined in the SVD module. #include <Eigen/SVD>
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename OtherDerived>
Transform& Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: scale(const MatrixBase<OtherDerived>& other)
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename OtherDerived>
Transform<Scalar, Dim, Mode, Options>& Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: scale(const MatrixBase<OtherDerived>& other)
Applies on the right the non uniform scale transformation represented by the vector other to *this
and returns a reference to *this
.
template<typename _Scalar, int _Dim, int _Mode, int _Options>
void Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: setIdentity()
template<typename _Scalar, int _Dim, int _Mode, int _Options>
QMatrix Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: toQMatrix(void) const
Returns | a QMatrix from *this assuming the dimension is 2. |
---|
This function is available only if the token EIGEN_QT_SUPPORT is defined.
template<typename _Scalar, int _Dim, int _Mode, int _Options>
QTransform Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: toQTransform(void) const
Returns | a QTransform from *this assuming the dimension is 2. |
---|
This function is available only if the token EIGEN_QT_SUPPORT is defined.
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename OtherDerived>
Transform& Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: translate(const MatrixBase<OtherDerived>& other)
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename OtherDerived>
Transform<Scalar, Dim, Mode, Options>& Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: translate(const MatrixBase<OtherDerived>& other)
Applies on the right the translation matrix represented by the vector other to *this
and returns a reference to *this
.
template<typename _Scalar, int _Dim, int _Mode, int _Options>
ConstTranslationPart Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: translation() const
Returns | a read-only expression of the translation vector of the transformation |
---|
template<typename _Scalar, int _Dim, int _Mode, int _Options>
TranslationPart Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: translation()
Returns | a writable expression of the translation vector of the transformation |
---|
template<typename _Scalar, int _Dim, int _Mode, int _Options>
Block<MatrixType, int(Mode)==int(Projective)?HDim:Dim, 1> Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: translationExt()
template<typename _Scalar, int _Dim, int _Mode, int _Options>
const Block<MatrixType, int(Mode)==int(Projective)?HDim:Dim, 1> Eigen:: Transform<_Scalar, _Dim, _Mode, _Options>:: translationExt() const
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename OtherDerived>
const internal::transform_left_product_impl<OtherDerived, Mode, Options, _Dim, _Dim+1>::ResultType operator*(const EigenBase<OtherDerived>& a,
const Transform& b)
Returns | the product expression of a transformation matrix a times a transform b |
---|
The left hand side other can be either:
- a linear transformation matrix of size Dim x Dim,
- an affine transformation matrix of size Dim x Dim+1,
- a general transformation matrix of size Dim+1 x Dim+1.
template<typename _Scalar, int _Dim, int _Mode, int _Options>
template<typename DiagonalDerived>
TransformTimeDiagonalReturnType operator*(const DiagonalBase<DiagonalDerived>& a,
const Transform& b)
Returns | The product expression of a diagonal matrix a times a transform b |
---|
The lhs diagonal matrix is interpreted as an affine scaling transformation. The product results in a Transform of the same type (mode) as the lhs only if the lhs mode is no isometry. In that case, the returned transform is an affinity.