template<typename Scalar>
Eigen::JacobiRotation class

Rotation given by a cosine-sine pair.

This is defined in the Jacobi module. #include <Eigen/Jacobi>

This class represents a Jacobi or Givens rotation. This is a 2D rotation in the plane J of angle $ \theta $ defined by its cosine c and sine s as follow: $ J = \left ( \begin{array}{cc} c & \overline s \\ -s & \overline c \end{array} \right ) $

You can apply the respective counter-clockwise rotation to a column vector v by applying its adjoint on the left: $ v = J^* v $ that translates to the following Eigen code: v.applyOnTheLeft(J.adjoint());

Public types

using RealScalar = NumTraits<Scalar>::Real

Constructors, destructors, conversion operators

JacobiRotation()
JacobiRotation(const Scalar& c, const Scalar& s)

Public functions

auto adjoint() const -> JacobiRotation
auto c() -> Scalar&
auto c() const -> Scalar
void makeGivens(const Scalar& p, const Scalar& q, Scalar* r = 0)
template<typename Derived>
auto makeJacobi(const MatrixBase<Derived>&, Index p, Index q) -> bool
auto makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z) -> bool
auto operator*(const JacobiRotation& other) -> JacobiRotation
auto s() -> Scalar&
auto s() const -> Scalar
auto transpose() const -> JacobiRotation

Protected functions

void makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type)
void makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type)

Protected variables

Scalar m_c
Scalar m_s

Typedef documentation

template<typename Scalar>
typedef NumTraits<Scalar>::Real Eigen::JacobiRotation<Scalar>::RealScalar

Function documentation

template<typename Scalar>
Eigen::JacobiRotation<Scalar>::JacobiRotation()

Default constructor without any initialization.

template<typename Scalar>
Eigen::JacobiRotation<Scalar>::JacobiRotation(const Scalar& c, const Scalar& s)

Construct a planar rotation from a cosine-sine pair (c, s).

template<typename Scalar>
JacobiRotation Eigen::JacobiRotation<Scalar>::adjoint() const

Returns the adjoint transformation

template<typename Scalar>
Scalar& Eigen::JacobiRotation<Scalar>::c()

template<typename Scalar>
Scalar Eigen::JacobiRotation<Scalar>::c() const

template<typename Scalar>
void Eigen::JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r = 0)

Makes *this as a Givens rotation G such that applying $ G^* $ to the left of the vector $ V = \left ( \begin{array}{c} p \\ q \end{array} \right )$ yields: $ G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )$ .

The value of r is returned if r is not null (the default is null). Also note that G is built such that the cosine is always real.

Example:

Vector2f v = Vector2f::Random();
JacobiRotation<float> G;
G.makeGivens(v.x(), v.y());
cout << "Here is the vector v:" << endl << v << endl;
v.applyOnTheLeft(0, 1, G.adjoint());
cout << "Here is the vector J' * v:" << endl << v << endl;

Output:

Here is the vector v:
  0.68
-0.211
Here is the vector J' * v:
0.712
    0

This function implements the continuous Givens rotation generation algorithm found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem. LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000.

template<typename Scalar> template<typename Derived>
bool Eigen::JacobiRotation<Scalar>::makeJacobi(const MatrixBase<Derived>&, Index p, Index q)

Makes *this as a Jacobi rotation J such that applying J on both the right and left sides of the 2x2 selfadjoint matrix $ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )$ yields a diagonal matrix $ A = J^* B J $

Example:

Matrix2f m = Matrix2f::Random();
m = (m + m.adjoint()).eval();
JacobiRotation<float> J;
J.makeJacobi(m, 0, 1);
cout << "Here is the matrix m:" << endl << m << endl;
m.applyOnTheLeft(0, 1, J.adjoint());
m.applyOnTheRight(0, 1, J);
cout << "Here is the matrix J' * m * J:" << endl << m << endl;

Output:

Here is the matrix m:
 1.36 0.355
0.355  1.19
Here is the matrix J' * m * J:
 1.64     0
    0 0.913

template<typename Scalar>
bool Eigen::JacobiRotation<Scalar>::makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z)

Makes *this as a Jacobi rotation J such that applying J on both the right and left sides of the selfadjoint 2x2 matrix $ B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )$ yields a diagonal matrix $ A = J^* B J $

template<typename Scalar>
JacobiRotation Eigen::JacobiRotation<Scalar>::operator*(const JacobiRotation& other)

Concatenates two planar rotation

template<typename Scalar>
Scalar& Eigen::JacobiRotation<Scalar>::s()

template<typename Scalar>
Scalar Eigen::JacobiRotation<Scalar>::s() const

template<typename Scalar>
JacobiRotation Eigen::JacobiRotation<Scalar>::transpose() const

Returns the transposed transformation

template<typename Scalar>
void Eigen::JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type) protected

template<typename Scalar>
void Eigen::JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type) protected

Variable documentation

template<typename Scalar>
Scalar Eigen::JacobiRotation<Scalar>::m_c protected

template<typename Scalar>
Scalar Eigen::JacobiRotation<Scalar>::m_s protected