template<typename _MatrixType, typename _OrderingType>
Eigen::SparseQR class

Sparse left-looking rank-revealing QR factorization.

Template parameters
_MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
_OrderingType The fill-reducing ordering method. See the OrderingMethods module for the list of built-in and external ordering methods.

This class implements a left-looking rank-revealing QR decomposition of sparse matrices. When a column has a norm less than a given tolerance it is implicitly permuted to the end. The QR factorization thus obtained is given by A*P = Q*R where R is upper triangular or trapezoidal.

P is the column permutation which is the product of the fill-reducing and the rank-revealing permutations. Use colsPermutation() to get it.

Q is the orthogonal matrix represented as products of Householder reflectors. Use matrixQ() to get an expression and matrixQ().adjoint() to get the adjoint. You can then apply it to a vector.

R is the sparse triangular or trapezoidal matrix. The later occurs when A is rank-deficient. matrixR().topLeftCorner(rank(), rank()) always returns a triangular factor of full rank.

This class follows the sparse solver concept.

Base classes

template<typename Derived>
class SparseSolverBase
A base class for sparse solvers.

Constructors, destructors, conversion operators

SparseQR(const MatrixType& mat) explicit

Public functions

void analyzePattern(const MatrixType& mat)
Preprocessing step of a QR factorization.
auto cols() const -> Index
auto colsPermutation() const -> const PermutationType&
void compute(const MatrixType& mat)
void factorize(const MatrixType& mat)
Performs the numerical QR factorization of the input matrix.
auto info() const -> ComputationInfo
Reports whether previous computation was successful.
auto lastErrorMessage() const -> std::string
auto matrixQ() const -> SparseQRMatrixQReturnType<SparseQR>
auto matrixR() const -> const QRMatrixType&
auto rank() const -> Index
auto rows() const -> Index
void setPivotThreshold(const RealScalar& threshold)
template<typename Rhs>
auto solve(const MatrixBase<Rhs>& B) const -> const Solve<SparseQR, Rhs>

Function documentation

template<typename _MatrixType, typename _OrderingType>
Eigen::SparseQR<_MatrixType, _OrderingType>::SparseQR(const MatrixType& mat) explicit

Construct a QR factorization of the matrix mat.

template<typename _MatrixType, typename _OrderingType>
void Eigen::SparseQR<_MatrixType, _OrderingType>::analyzePattern(const MatrixType& mat)

Preprocessing step of a QR factorization.

In this step, the fill-reducing permutation is computed and applied to the columns of A and the column elimination tree is computed as well. Only the sparsity pattern of mat is exploited.

template<typename _MatrixType, typename _OrderingType>
Index Eigen::SparseQR<_MatrixType, _OrderingType>::cols() const

Returns the number of columns of the represented matrix.

template<typename _MatrixType, typename _OrderingType>
const PermutationType& Eigen::SparseQR<_MatrixType, _OrderingType>::colsPermutation() const

Returns a const reference to the column permutation P that was applied to A such that A*P = Q*R It is the combination of the fill-in reducing permutation and numerical column pivoting.

template<typename _MatrixType, typename _OrderingType>
void Eigen::SparseQR<_MatrixType, _OrderingType>::compute(const MatrixType& mat)

Computes the QR factorization of the sparse matrix mat.

template<typename _MatrixType, typename _OrderingType>
void Eigen::SparseQR<_MatrixType, _OrderingType>::factorize(const MatrixType& mat)

Performs the numerical QR factorization of the input matrix.

Parameters
mat The sparse column-major matrix

The function SparseQR::analyzePattern(const MatrixType&) must have been called beforehand with a matrix having the same sparsity pattern than mat.

template<typename _MatrixType, typename _OrderingType>
ComputationInfo Eigen::SparseQR<_MatrixType, _OrderingType>::info() const

Reports whether previous computation was successful.

Returns Success if computation was successful, NumericalIssue if the QR factorization reports a numerical problem InvalidInput if the input matrix is invalid

template<typename _MatrixType, typename _OrderingType>
std::string Eigen::SparseQR<_MatrixType, _OrderingType>::lastErrorMessage() const

Returns A string describing the type of error. This method is provided to ease debugging, not to handle errors.

template<typename _MatrixType, typename _OrderingType>
SparseQRMatrixQReturnType<SparseQR> Eigen::SparseQR<_MatrixType, _OrderingType>::matrixQ() const

Returns

an expression of the matrix Q as products of sparse Householder reflectors. The common usage of this function is to apply it to a dense matrix or vector

VectorXd B1, B2;
// Initialize B1
B2 = matrixQ() * B1;

To get a plain SparseMatrix representation of Q:

SparseMatrix<double> Q;
Q = SparseQR<SparseMatrix<double> >(A).matrixQ();

Internally, this call simply performs a sparse product between the matrix Q and a sparse identity matrix. However, due to the fact that the sparse reflectors are stored unsorted, two transpositions are needed to sort them before performing the product.

template<typename _MatrixType, typename _OrderingType>
const QRMatrixType& Eigen::SparseQR<_MatrixType, _OrderingType>::matrixR() const

Returns a const reference to the sparse upper triangular matrix R of the QR factorization.

To sort the entries, you can assign it to a row-major matrix, and if a column-major matrix is required, you can copy it again:

SparseMatrix<double>          R  = qr.matrixR();  // column-major, not sorted!
SparseMatrix<double,RowMajor> Rr = qr.matrixR();  // row-major, sorted
SparseMatrix<double>          Rc = Rr;            // column-major, sorted

template<typename _MatrixType, typename _OrderingType>
Index Eigen::SparseQR<_MatrixType, _OrderingType>::rank() const

Returns the number of non linearly dependent columns as determined by the pivoting threshold.

template<typename _MatrixType, typename _OrderingType>
Index Eigen::SparseQR<_MatrixType, _OrderingType>::rows() const

Returns the number of rows of the represented matrix.

template<typename _MatrixType, typename _OrderingType>
void Eigen::SparseQR<_MatrixType, _OrderingType>::setPivotThreshold(const RealScalar& threshold)

Sets the threshold that is used to determine linearly dependent columns during the factorization.

In practice, if during the factorization the norm of the column that has to be eliminated is below this threshold, then the entire column is treated as zero, and it is moved at the end.

template<typename _MatrixType, typename _OrderingType> template<typename Rhs>
const Solve<SparseQR, Rhs> Eigen::SparseQR<_MatrixType, _OrderingType>::solve(const MatrixBase<Rhs>& B) const

Returns the solution X of $ A X = B $ using the current decomposition of A.