template<typename VectorsType, typename CoeffsType, int Side>
HouseholderSequence class
Sequence of Householder reflections acting on subspaces with decreasing size.
Template parameters | |
---|---|
VectorsType | type of matrix containing the Householder vectors |
CoeffsType | type of vector containing the Householder coefficients |
Side | either OnTheLeft (the default) or OnTheRight |
Contents
This is defined in the Householder module. #include <Eigen/Householder>
This class represents a product sequence of Householder reflections where the first Householder reflection acts on the whole space, the second Householder reflection leaves the one-dimensional subspace spanned by the first unit vector invariant, the third Householder reflection leaves the two-dimensional subspace spanned by the first two unit vectors invariant, and so on up to the last reflection which leaves all but one dimensions invariant and acts only on the last dimension. Such sequences of Householder reflections are used in several algorithms to zero out certain parts of a matrix. Indeed, the methods HessenbergDecomposition::
More precisely, the class HouseholderSequence represents an matrix of the form where the i-th Householder reflection is . The i-th Householder coefficient is a scalar and the i-th Householder vector is a vector of the form
The last entries of are called the essential part of the Householder vector.
Typical usages are listed below, where H is a HouseholderSequence:
A.applyOnTheRight(H); // A = A * H A.applyOnTheLeft(H); // A = H * A A.applyOnTheRight(H.adjoint()); // A = A * H^* A.applyOnTheLeft(H.adjoint()); // A = H^* * A MatrixXd Q = H; // conversion to a dense matrix
In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators.
See the documentation for HouseholderSequence(const VectorsType&, const CoeffsType&) for an example.
Base classes
-
template<typename Derived>class EigenBase
Public types
- enum (anonymous) { RowsAtCompileTime = internal::traits<HouseholderSequence>::RowsAtCompileTime, ColsAtCompileTime = internal::traits<HouseholderSequence>::ColsAtCompileTime, MaxRowsAtCompileTime = internal::traits<HouseholderSequence>::MaxRowsAtCompileTime, MaxColsAtCompileTime = internal::traits<HouseholderSequence>::MaxColsAtCompileTime }
- using AdjointReturnType = HouseholderSequence<VectorsType, typename internal::conditional<NumTraits<Scalar>::IsComplex, typename internal::remove_all<typename CoeffsType::ConjugateReturnType>::type, CoeffsType>::type, Side>
- using ConjugateReturnType = HouseholderSequence<typename internal::conditional<NumTraits<Scalar>::IsComplex, typename internal::remove_all<typename VectorsType::ConjugateReturnType>::type, VectorsType>::type, typename internal::conditional<NumTraits<Scalar>::IsComplex, typename internal::remove_all<typename CoeffsType::ConjugateReturnType>::type, CoeffsType>::type, Side>
- using ConstHouseholderSequence = HouseholderSequence<typename internal::add_const<VectorsType>::type, typename internal::add_const<CoeffsType>::type, Side>
- using Scalar = internal::traits<HouseholderSequence>::Scalar
- using TransposeReturnType = HouseholderSequence<typename internal::conditional<NumTraits<Scalar>::IsComplex, typename internal::remove_all<typename VectorsType::ConjugateReturnType>::type, VectorsType>::type, CoeffsType, Side>
Constructors, destructors, conversion operators
- HouseholderSequence(const VectorsType& v, const CoeffsType& h)
- Constructor.
- HouseholderSequence(const HouseholderSequence& other)
- Copy constructor.
Public functions
- auto adjoint() const -> AdjointReturnType
- Adjoint (conjugate transpose) of the Householder sequence.
-
template<typename Dest>void applyThisOnTheLeft(Dest& dst, bool inputIsIdentity = false) const
-
template<typename Dest, typename Workspace>void applyThisOnTheLeft(Dest& dst, Workspace& workspace, bool inputIsIdentity = false) const
-
template<typename Dest>void applyThisOnTheRight(Dest& dst) const
-
template<typename Dest, typename Workspace>void applyThisOnTheRight(Dest& dst, Workspace& workspace) const
- auto cols() const -> Index
- Number of columns of transformation viewed as a matrix.
- auto conjugate() const -> ConjugateReturnType
- Complex conjugate of the Householder sequence.
-
template<bool Cond>auto conjugateIf() const -> internal::conditional<Cond, ConjugateReturnType, ConstHouseholderSequence>::type
- auto essentialVector(Index k) const -> const EssentialVectorType
- Essential part of a Householder vector.
-
template<typename DestType>void evalTo(DestType& dst) const
-
template<typename Dest, typename Workspace>void evalTo(Dest& dst, Workspace& workspace) const
- auto inverse() const -> AdjointReturnType
- Inverse of the Householder sequence (equals the adjoint).
- auto length() const -> Index
- Returns the length of the Householder sequence.
-
template<typename OtherDerived>auto operator*(const MatrixBase<OtherDerived>& other) const -> internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type
- Computes the product of a Householder sequence with a matrix.
- auto rows() const -> Index
- Number of rows of transformation viewed as a matrix.
- auto setLength(Index length) -> HouseholderSequence&
- Sets the length of the Householder sequence.
- auto setShift(Index shift) -> HouseholderSequence&
- Sets the shift of the Householder sequence.
- auto shift() const -> Index
- Returns the shift of the Householder sequence.
- auto transpose() const -> TransposeReturnType
- Transpose of the Householder sequence.
Protected types
- enum (anonymous) { BlockSize = 48 }
Protected functions
- auto reverseFlag() const -> bool
- auto setReverseFlag(bool reverse) -> HouseholderSequence&
Protected variables
Enum documentation
template<typename VectorsType, typename CoeffsType, int Side>
enum Eigen:: HouseholderSequence<VectorsType, CoeffsType, Side>:: (anonymous)
Enumerators | |
---|---|
RowsAtCompileTime | |
ColsAtCompileTime | |
MaxRowsAtCompileTime | |
MaxColsAtCompileTime |
template<typename VectorsType, typename CoeffsType, int Side>
enum Eigen:: HouseholderSequence<VectorsType, CoeffsType, Side>:: (anonymous) protected
Enumerators | |
---|---|
BlockSize |
Typedef documentation
template<typename VectorsType, typename CoeffsType, int Side>
typedef HouseholderSequence<VectorsType, typename internal::conditional<NumTraits<Scalar>::IsComplex, typename internal::remove_all<typename CoeffsType::ConjugateReturnType>::type, CoeffsType>::type, Side> Eigen:: HouseholderSequence<VectorsType, CoeffsType, Side>:: AdjointReturnType
template<typename VectorsType, typename CoeffsType, int Side>
typedef HouseholderSequence<typename internal::conditional<NumTraits<Scalar>::IsComplex, typename internal::remove_all<typename VectorsType::ConjugateReturnType>::type, VectorsType>::type, typename internal::conditional<NumTraits<Scalar>::IsComplex, typename internal::remove_all<typename CoeffsType::ConjugateReturnType>::type, CoeffsType>::type, Side> Eigen:: HouseholderSequence<VectorsType, CoeffsType, Side>:: ConjugateReturnType
template<typename VectorsType, typename CoeffsType, int Side>
typedef HouseholderSequence<typename internal::add_const<VectorsType>::type, typename internal::add_const<CoeffsType>::type, Side> Eigen:: HouseholderSequence<VectorsType, CoeffsType, Side>:: ConstHouseholderSequence
template<typename VectorsType, typename CoeffsType, int Side>
typedef internal::traits<HouseholderSequence>::Scalar Eigen:: HouseholderSequence<VectorsType, CoeffsType, Side>:: Scalar
template<typename VectorsType, typename CoeffsType, int Side>
typedef HouseholderSequence<typename internal::conditional<NumTraits<Scalar>::IsComplex, typename internal::remove_all<typename VectorsType::ConjugateReturnType>::type, VectorsType>::type, CoeffsType, Side> Eigen:: HouseholderSequence<VectorsType, CoeffsType, Side>:: TransposeReturnType
Function documentation
template<typename VectorsType, typename CoeffsType, int Side>
Eigen:: HouseholderSequence<VectorsType, CoeffsType, Side>:: HouseholderSequence(const VectorsType& v,
const CoeffsType& h)
Constructor.
Parameters | |
---|---|
v in | Matrix containing the essential parts of the Householder vectors |
h in | Vector containing the Householder coefficients |
Constructs the Householder sequence with coefficients given by h
and vectors given by v
. The i-th Householder coefficient is given by h(i)
and the essential part of the i-th Householder vector is given by v(k,i)
with k
> i
(the subdiagonal part of the i-th column). If v
has fewer columns than rows, then the Householder sequence contains as many Householder reflections as there are columns.
Example:
Matrix3d v = Matrix3d::Random(); cout << "The matrix v is:" << endl; cout << v << endl; Vector3d v0(1, v(1,0), v(2,0)); cout << "The first Householder vector is: v_0 = " << v0.transpose() << endl; Vector3d v1(0, 1, v(2,1)); cout << "The second Householder vector is: v_1 = " << v1.transpose() << endl; Vector3d v2(0, 0, 1); cout << "The third Householder vector is: v_2 = " << v2.transpose() << endl; Vector3d h = Vector3d::Random(); cout << "The Householder coefficients are: h = " << h.transpose() << endl; Matrix3d H0 = Matrix3d::Identity() - h(0) * v0 * v0.adjoint(); cout << "The first Householder reflection is represented by H_0 = " << endl; cout << H0 << endl; Matrix3d H1 = Matrix3d::Identity() - h(1) * v1 * v1.adjoint(); cout << "The second Householder reflection is represented by H_1 = " << endl; cout << H1 << endl; Matrix3d H2 = Matrix3d::Identity() - h(2) * v2 * v2.adjoint(); cout << "The third Householder reflection is represented by H_2 = " << endl; cout << H2 << endl; cout << "Their product is H_0 H_1 H_2 = " << endl; cout << H0 * H1 * H2 << endl; HouseholderSequence<Matrix3d, Vector3d> hhSeq(v, h); Matrix3d hhSeqAsMatrix(hhSeq); cout << "If we construct a HouseholderSequence from v and h" << endl; cout << "and convert it to a matrix, we get:" << endl; cout << hhSeqAsMatrix << endl;
Output:
The matrix v is: 0.68 0.597 -0.33 -0.211 0.823 0.536 0.566 -0.605 -0.444 The first Householder vector is: v_0 = 1 -0.211 0.566 The second Householder vector is: v_1 = 0 1 -0.605 The third Householder vector is: v_2 = 0 0 1 The Householder coefficients are: h = 0.108 -0.0452 0.258 The first Householder reflection is represented by H_0 = 0.892 0.0228 -0.0611 0.0228 0.995 0.0129 -0.0611 0.0129 0.965 The second Householder reflection is represented by H_1 = 1 0 0 0 1.05 -0.0273 0 -0.0273 1.02 The third Householder reflection is represented by H_2 = 1 0 0 0 1 0 0 0 0.742 Their product is H_0 H_1 H_2 = 0.892 0.0255 -0.0466 0.0228 1.04 -0.0105 -0.0611 -0.0129 0.728 If we construct a HouseholderSequence from v and h and convert it to a matrix, we get: 0.892 0.0255 -0.0466 0.0228 1.04 -0.0105 -0.0611 -0.0129 0.728
template<typename VectorsType, typename CoeffsType, int Side>
Eigen:: HouseholderSequence<VectorsType, CoeffsType, Side>:: HouseholderSequence(const HouseholderSequence& other)
Copy constructor.
template<typename VectorsType, typename CoeffsType, int Side>
AdjointReturnType Eigen:: HouseholderSequence<VectorsType, CoeffsType, Side>:: adjoint() const
Adjoint (conjugate transpose) of the Householder sequence.
template<typename VectorsType, typename CoeffsType, int Side>
template<typename Dest>
void Eigen:: HouseholderSequence<VectorsType, CoeffsType, Side>:: applyThisOnTheLeft(Dest& dst,
bool inputIsIdentity = false) const
template<typename VectorsType, typename CoeffsType, int Side>
template<typename Dest, typename Workspace>
void Eigen:: HouseholderSequence<VectorsType, CoeffsType, Side>:: applyThisOnTheLeft(Dest& dst,
Workspace& workspace,
bool inputIsIdentity = false) const
template<typename VectorsType, typename CoeffsType, int Side>
template<typename Dest>
void Eigen:: HouseholderSequence<VectorsType, CoeffsType, Side>:: applyThisOnTheRight(Dest& dst) const
template<typename VectorsType, typename CoeffsType, int Side>
template<typename Dest, typename Workspace>
void Eigen:: HouseholderSequence<VectorsType, CoeffsType, Side>:: applyThisOnTheRight(Dest& dst,
Workspace& workspace) const
template<typename VectorsType, typename CoeffsType, int Side>
ConjugateReturnType Eigen:: HouseholderSequence<VectorsType, CoeffsType, Side>:: conjugate() const
Complex conjugate of the Householder sequence.
template<typename VectorsType, typename CoeffsType, int Side>
template<bool Cond>
internal::conditional<Cond, ConjugateReturnType, ConstHouseholderSequence>::type Eigen:: HouseholderSequence<VectorsType, CoeffsType, Side>:: conjugateIf() const
Returns | an expression of the complex conjugate of *this if Cond==true, returns *this otherwise. |
---|
template<typename VectorsType, typename CoeffsType, int Side>
const EssentialVectorType Eigen:: HouseholderSequence<VectorsType, CoeffsType, Side>:: essentialVector(Index k) const
Essential part of a Householder vector.
Parameters | |
---|---|
k in | Index of Householder reflection |
Returns | Vector containing non-trivial entries of k-th Householder vector |
This function returns the essential part of the Householder vector . This is a vector of length containing the last entries of the vector
The index equals k
+ shift(), corresponding to the k-th column of the matrix v
passed to the constructor.
template<typename VectorsType, typename CoeffsType, int Side>
template<typename DestType>
void Eigen:: HouseholderSequence<VectorsType, CoeffsType, Side>:: evalTo(DestType& dst) const
template<typename VectorsType, typename CoeffsType, int Side>
template<typename Dest, typename Workspace>
void Eigen:: HouseholderSequence<VectorsType, CoeffsType, Side>:: evalTo(Dest& dst,
Workspace& workspace) const
template<typename VectorsType, typename CoeffsType, int Side>
AdjointReturnType Eigen:: HouseholderSequence<VectorsType, CoeffsType, Side>:: inverse() const
Inverse of the Householder sequence (equals the adjoint).
template<typename VectorsType, typename CoeffsType, int Side>
template<typename OtherDerived>
internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type Eigen:: HouseholderSequence<VectorsType, CoeffsType, Side>:: operator*(const MatrixBase<OtherDerived>& other) const
Computes the product of a Householder sequence with a matrix.
Parameters | |
---|---|
other in | Matrix being multiplied. |
Returns | Expression object representing the product. |
This function computes where is the Householder sequence represented by *this
and is the matrix other
.
template<typename VectorsType, typename CoeffsType, int Side>
HouseholderSequence& Eigen:: HouseholderSequence<VectorsType, CoeffsType, Side>:: setLength(Index length)
Sets the length of the Householder sequence.
Parameters | |
---|---|
length in | New value for the length. |
By default, the length of the Householder sequence is set to the number of columns of the matrix v
passed to the constructor, or the number of rows if that is smaller. After this function is called, the length equals length
.
template<typename VectorsType, typename CoeffsType, int Side>
HouseholderSequence& Eigen:: HouseholderSequence<VectorsType, CoeffsType, Side>:: setShift(Index shift)
Sets the shift of the Householder sequence.
Parameters | |
---|---|
shift in | New value for the shift. |
By default, a HouseholderSequence object represents and the i-th column of the matrix v
passed to the constructor corresponds to the i-th Householder reflection. After this function is called, the object represents and the i-th column of v
corresponds to the (shift+i)-th Householder reflection.
template<typename VectorsType, typename CoeffsType, int Side>
TransposeReturnType Eigen:: HouseholderSequence<VectorsType, CoeffsType, Side>:: transpose() const
Transpose of the Householder sequence.