template<typename _MatrixType>
Tridiagonalization class
Tridiagonal decomposition of a selfadjoint matrix.
Template parameters | |
---|---|
_MatrixType | the type of the matrix of which we are computing the tridiagonal decomposition; this is expected to be an instantiation of the Matrix class template. |
Contents
This is defined in the Eigenvalues module. #include <Eigen/Eigenvalues>
This class performs a tridiagonal decomposition of a selfadjoint matrix such that: where is unitary and a real symmetric tridiagonal matrix.
A tridiagonal matrix is a matrix which has nonzero elements only on the main diagonal and the first diagonal below and above it. The Hessenberg decomposition of a selfadjoint matrix is in fact a tridiagonal decomposition. This class is used in SelfAdjointEigenSolver to compute the eigenvalues and eigenvectors of a selfadjoint matrix.
Call the function compute() to compute the tridiagonal decomposition of a given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&) constructor which computes the tridiagonal Schur decomposition at construction time. Once the decomposition is computed, you can use the matrixQ() and matrixT() functions to retrieve the matrices Q and T in the decomposition.
The documentation of Tridiagonalization(const MatrixType&) contains an example of the typical use of this class.
Public types
- using HouseholderSequenceType = HouseholderSequence<MatrixType, typename internal::remove_all<typename CoeffVectorType::ConjugateReturnType>::type>
- Return type of matrixQ()
-
using Index = Eigen::
Index deprecated - using MatrixType = _MatrixType
- Synonym for the template parameter
_MatrixType
.
Constructors, destructors, conversion operators
- Tridiagonalization(Index size = Size==Dynamic ? 2 :Size) explicit
- Default constructor.
-
template<typename InputType>Tridiagonalization(const EigenBase<InputType>& matrix) explicit
- Constructor; computes tridiagonal decomposition of given matrix.
Public functions
-
template<typename InputType>auto compute(const EigenBase<InputType>& matrix) -> Tridiagonalization&
- Computes tridiagonal decomposition of given matrix.
- auto diagonal() const -> DiagonalReturnType
- Returns the diagonal of the tridiagonal matrix T in the decomposition.
- auto householderCoefficients() const -> CoeffVectorType
- Returns the Householder coefficients.
- auto matrixQ() const -> HouseholderSequenceType
- Returns the unitary matrix Q in the decomposition.
- auto matrixT() const -> MatrixTReturnType
- Returns an expression of the tridiagonal matrix T in the decomposition.
- auto packedMatrix() const -> const MatrixType&
- Returns the internal representation of the decomposition.
- auto subDiagonal() const -> SubDiagonalReturnType
- Returns the subdiagonal of the tridiagonal matrix T in the decomposition.
Typedef documentation
template<typename _MatrixType>
typedef Eigen:: Index Eigen:: Tridiagonalization<_MatrixType>:: Index
Function documentation
template<typename _MatrixType>
Eigen:: Tridiagonalization<_MatrixType>:: Tridiagonalization(Index size = Size==Dynamic ? 2 :Size) explicit
Default constructor.
Parameters | |
---|---|
size in | Positive integer, size of the matrix whose tridiagonal decomposition will be computed. |
The default constructor is useful in cases in which the user intends to perform decompositions via compute(). The size
parameter is only used as a hint. It is not an error to give a wrong size
, but it may impair performance.
template<typename _MatrixType>
template<typename InputType>
Eigen:: Tridiagonalization<_MatrixType>:: Tridiagonalization(const EigenBase<InputType>& matrix) explicit
Constructor; computes tridiagonal decomposition of given matrix.
Parameters | |
---|---|
matrix in | Selfadjoint matrix whose tridiagonal decomposition is to be computed. |
This constructor calls compute() to compute the tridiagonal decomposition.
Example:
MatrixXd X = MatrixXd::Random(5,5); MatrixXd A = X + X.transpose(); cout << "Here is a random symmetric 5x5 matrix:" << endl << A << endl << endl; Tridiagonalization<MatrixXd> triOfA(A); MatrixXd Q = triOfA.matrixQ(); cout << "The orthogonal matrix Q is:" << endl << Q << endl; MatrixXd T = triOfA.matrixT(); cout << "The tridiagonal matrix T is:" << endl << T << endl << endl; cout << "Q * T * Q^T = " << endl << Q * T * Q.transpose() << endl;
Output:
Here is a random symmetric 5x5 matrix: 1.36 -0.816 0.521 1.43 -0.144 -0.816 -0.659 0.794 -0.173 -0.406 0.521 0.794 -0.541 0.461 0.179 1.43 -0.173 0.461 -1.43 0.822 -0.144 -0.406 0.179 0.822 -1.37 The orthogonal matrix Q is: 1 0 0 0 0 0 -0.471 0.127 -0.671 -0.558 0 0.301 -0.195 0.437 -0.825 0 0.825 0.0459 -0.563 -0.00872 0 -0.0832 -0.971 -0.202 0.0922 The tridiagonal matrix T is: 1.36 1.73 0 0 0 1.73 -1.2 -0.966 0 0 0 -0.966 -1.28 0.214 0 0 0 0.214 -1.69 0.345 0 0 0 0.345 0.164 Q * T * Q^T = 1.36 -0.816 0.521 1.43 -0.144 -0.816 -0.659 0.794 -0.173 -0.406 0.521 0.794 -0.541 0.461 0.179 1.43 -0.173 0.461 -1.43 0.822 -0.144 -0.406 0.179 0.822 -1.37
template<typename _MatrixType>
template<typename InputType>
Tridiagonalization& Eigen:: Tridiagonalization<_MatrixType>:: compute(const EigenBase<InputType>& matrix)
Computes tridiagonal decomposition of given matrix.
Parameters | |
---|---|
matrix in | Selfadjoint matrix whose tridiagonal decomposition is to be computed. |
Returns | Reference to *this |
The tridiagonal decomposition is computed by bringing the columns of the matrix successively in the required form using Householder reflections. The cost is flops, where denotes the size of the given matrix.
This method reuses of the allocated data in the Tridiagonalization object, if the size of the matrix does not change.
Example:
Tridiagonalization<MatrixXf> tri; MatrixXf X = MatrixXf::Random(4,4); MatrixXf A = X + X.transpose(); tri.compute(A); cout << "The matrix T in the tridiagonal decomposition of A is: " << endl; cout << tri.matrixT() << endl; tri.compute(2*A); // re-use tri to compute eigenvalues of 2A cout << "The matrix T in the tridiagonal decomposition of 2A is: " << endl; cout << tri.matrixT() << endl;
Output:
The matrix T in the tridiagonal decomposition of A is: 1.36 -0.704 0 0 -0.704 0.0147 1.71 0 0 1.71 0.856 0.641 0 0 0.641 -0.506 The matrix T in the tridiagonal decomposition of 2A is: 2.72 -1.41 0 0 -1.41 0.0294 3.43 0 0 3.43 1.71 1.28 0 0 1.28 -1.01
template<typename _MatrixType>
DiagonalReturnType Eigen:: Tridiagonalization<_MatrixType>:: diagonal() const
Returns the diagonal of the tridiagonal matrix T in the decomposition.
Returns | expression representing the diagonal of T |
---|
Example:
MatrixXcd X = MatrixXcd::Random(4,4); MatrixXcd A = X + X.adjoint(); cout << "Here is a random self-adjoint 4x4 matrix:" << endl << A << endl << endl; Tridiagonalization<MatrixXcd> triOfA(A); MatrixXd T = triOfA.matrixT(); cout << "The tridiagonal matrix T is:" << endl << T << endl << endl; cout << "We can also extract the diagonals of T directly ..." << endl; VectorXd diag = triOfA.diagonal(); cout << "The diagonal is:" << endl << diag << endl; VectorXd subdiag = triOfA.subDiagonal(); cout << "The subdiagonal is:" << endl << subdiag << endl;
Output:
Here is a random self-adjoint 4x4 matrix: (-0.422,0) (0.705,-1.01) (-0.17,-0.552) (0.338,-0.357) (0.705,1.01) (0.515,0) (0.241,-0.446) (0.05,-1.64) (-0.17,0.552) (0.241,0.446) (-1.03,0) (0.0449,1.72) (0.338,0.357) (0.05,1.64) (0.0449,-1.72) (1.36,0) The tridiagonal matrix T is: -0.422 -1.45 0 0 -1.45 1.01 -1.42 0 0 -1.42 1.8 -1.2 0 0 -1.2 -1.96 We can also extract the diagonals of T directly ... The diagonal is: -0.422 1.01 1.8 -1.96 The subdiagonal is: -1.45 -1.42 -1.2
template<typename _MatrixType>
CoeffVectorType Eigen:: Tridiagonalization<_MatrixType>:: householderCoefficients() const
Returns the Householder coefficients.
Returns | a const reference to the vector of Householder coefficients |
---|
The Householder coefficients allow the reconstruction of the matrix in the tridiagonal decomposition from the packed data.
Example:
Matrix4d X = Matrix4d::Random(4,4); Matrix4d A = X + X.transpose(); cout << "Here is a random symmetric 4x4 matrix:" << endl << A << endl; Tridiagonalization<Matrix4d> triOfA(A); Vector3d hc = triOfA.householderCoefficients(); cout << "The vector of Householder coefficients is:" << endl << hc << endl;
Output:
Here is a random symmetric 4x4 matrix: 1.36 0.612 0.122 0.326 0.612 -1.21 -0.222 0.563 0.122 -0.222 -0.0904 1.16 0.326 0.563 1.16 1.66 The vector of Householder coefficients is: 1.87 1.24 0
template<typename _MatrixType>
HouseholderSequenceType Eigen:: Tridiagonalization<_MatrixType>:: matrixQ() const
Returns the unitary matrix Q in the decomposition.
Returns | object representing the matrix Q |
---|
This function returns a light-weight object of template class HouseholderSequence. You can either apply it directly to a matrix or you can convert it to a matrix of type MatrixType.
template<typename _MatrixType>
MatrixTReturnType Eigen:: Tridiagonalization<_MatrixType>:: matrixT() const
Returns an expression of the tridiagonal matrix T in the decomposition.
Returns | expression object representing the matrix T |
---|
Currently, this function can be used to extract the matrix T from internal data and copy it to a dense matrix object. In most cases, it may be sufficient to directly use the packed matrix or the vector expressions returned by diagonal() and subDiagonal() instead of creating a new dense copy matrix with this function.
template<typename _MatrixType>
const MatrixType& Eigen:: Tridiagonalization<_MatrixType>:: packedMatrix() const
Returns the internal representation of the decomposition.
Returns | a const reference to a matrix with the internal representation of the decomposition. |
---|
The returned matrix contains the following information:
- the strict upper triangular part is equal to the input matrix A.
- the diagonal and lower sub-diagonal represent the real tridiagonal symmetric matrix T.
- the rest of the lower part contains the Householder vectors that, combined with Householder coefficients returned by householderCoefficients(), allows to reconstruct the matrix Q as . Here, the matrices are the Householder transformations where is the th Householder coefficient and is the Householder vector defined by with M the matrix returned by this function.
See LAPACK for further details on this packed storage.
Example:
Matrix4d X = Matrix4d::Random(4,4); Matrix4d A = X + X.transpose(); cout << "Here is a random symmetric 4x4 matrix:" << endl << A << endl; Tridiagonalization<Matrix4d> triOfA(A); Matrix4d pm = triOfA.packedMatrix(); cout << "The packed matrix M is:" << endl << pm << endl; cout << "The diagonal and subdiagonal corresponds to the matrix T, which is:" << endl << triOfA.matrixT() << endl;
Output:
Here is a random symmetric 4x4 matrix: 1.36 0.612 0.122 0.326 0.612 -1.21 -0.222 0.563 0.122 -0.222 -0.0904 1.16 0.326 0.563 1.16 1.66 The packed matrix M is: 1.36 0.612 0.122 0.326 -0.704 0.0147 -0.222 0.563 0.0925 1.71 0.856 1.16 0.248 0.785 0.641 -0.506 The diagonal and subdiagonal corresponds to the matrix T, which is: 1.36 -0.704 0 0 -0.704 0.0147 1.71 0 0 1.71 0.856 0.641 0 0 0.641 -0.506
template<typename _MatrixType>
SubDiagonalReturnType Eigen:: Tridiagonalization<_MatrixType>:: subDiagonal() const
Returns the subdiagonal of the tridiagonal matrix T in the decomposition.
Returns | expression representing the subdiagonal of T |
---|