template<typename _MatrixType>
CompleteOrthogonalDecomposition class
Complete orthogonal decomposition (COD) of a matrix.
Contents
This class performs a rank-revealing complete orthogonal decomposition of a matrix A into matrices P, Q, T, and Z such that
by using Householder transformations. Here, P is a permutation matrix, Q and Z are unitary matrices and T an upper triangular matrix of size rank-by-rank. A may be rank deficient.
This class supports the inplace decomposition mechanism.
Base classes
-
template<typename Derived>class SolverBase
- A base class for matrix decomposition and solvers.
Public types
- enum (anonymous) { MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }
- using Base = SolverBase<CompleteOrthogonalDecomposition>
- using HCoeffsType = internal::plain_diag_type<MatrixType>::type
- using HouseholderSequenceType = HouseholderSequence<MatrixType, typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type>
- using IntRowVectorType = internal::plain_row_type<MatrixType, Index>::type
- using MatrixType = _MatrixType
- using PermutationType = PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime>
- using PlainObject = MatrixType::PlainObject
- using RealRowVectorType = internal::plain_row_type<MatrixType, RealScalar>::type
- using RowVectorType = internal::plain_row_type<MatrixType>::type
Constructors, destructors, conversion operators
- CompleteOrthogonalDecomposition()
- Default Constructor.
- CompleteOrthogonalDecomposition(Index rows, Index cols)
- Default Constructor with memory preallocation.
-
template<typename InputType>CompleteOrthogonalDecomposition(const EigenBase<InputType>& matrix) explicit
- Constructs a complete orthogonal decomposition from a given matrix.
-
template<typename InputType>CompleteOrthogonalDecomposition(EigenBase<InputType>& matrix) explicit
- Constructs a complete orthogonal decomposition from a given matrix.
Public functions
- auto absDeterminant() const -> MatrixType::RealScalar
- auto cols() const -> Index
- auto colsPermutation() const -> const PermutationType&
-
template<typename InputType>auto compute(const EigenBase<InputType>& matrix) -> CompleteOrthogonalDecomposition&
- auto dimensionOfKernel() const -> Index
- auto hCoeffs() const -> const HCoeffsType&
- auto householderQ(void) const -> HouseholderSequenceType
- auto info() const -> ComputationInfo
- Reports whether the complete orthogonal decomposition was successful.
- auto isInjective() const -> bool
- auto isInvertible() const -> bool
- auto isSurjective() const -> bool
- auto logAbsDeterminant() const -> MatrixType::RealScalar
- auto matrixQ(void) const -> HouseholderSequenceType
- auto matrixQTZ() const -> const MatrixType&
- auto matrixT() const -> const MatrixType&
- auto matrixZ() const -> MatrixType
- auto maxPivot() const -> RealScalar
- auto nonzeroPivots() const -> Index
- auto pseudoInverse() const -> const Inverse<CompleteOrthogonalDecomposition>
- auto rank() const -> Index
- auto rows() const -> Index
- auto setThreshold(const RealScalar& threshold) -> CompleteOrthogonalDecomposition&
- auto setThreshold(Default_t) -> CompleteOrthogonalDecomposition&
-
template<typename Rhs>auto solve(const MatrixBase<Rhs>& b) const -> const Solve<CompleteOrthogonalDecomposition, Rhs>
- auto threshold() const -> RealScalar
- auto zCoeffs() const -> const HCoeffsType&
Protected static functions
- static void check_template_parameters()
Protected functions
-
template<bool Transpose_, typename Rhs>void _check_solve_assertion(const Rhs& b) const
-
template<typename Rhs>void applyZAdjointOnTheLeftInPlace(Rhs& rhs) const
-
template<bool Conjugate, typename Rhs>void applyZOnTheLeftInPlace(Rhs& rhs) const
- void computeInPlace()
Protected variables
- ColPivHouseholderQR<MatrixType> m_cpqr
- RowVectorType m_temp
- HCoeffsType m_zCoeffs
Enum documentation
template<typename _MatrixType>
enum Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: (anonymous)
Enumerators | |
---|---|
MaxRowsAtCompileTime | |
MaxColsAtCompileTime |
Typedef documentation
template<typename _MatrixType>
typedef SolverBase<CompleteOrthogonalDecomposition> Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: Base
template<typename _MatrixType>
typedef internal::plain_diag_type<MatrixType>::type Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: HCoeffsType
template<typename _MatrixType>
typedef HouseholderSequence<MatrixType, typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: HouseholderSequenceType
template<typename _MatrixType>
typedef internal::plain_row_type<MatrixType, Index>::type Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: IntRowVectorType
template<typename _MatrixType>
typedef _MatrixType Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: MatrixType
template<typename _MatrixType>
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: PermutationType
template<typename _MatrixType>
typedef MatrixType::PlainObject Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: PlainObject
template<typename _MatrixType>
typedef internal::plain_row_type<MatrixType, RealScalar>::type Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: RealRowVectorType
template<typename _MatrixType>
typedef internal::plain_row_type<MatrixType>::type Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: RowVectorType
Function documentation
template<typename _MatrixType>
Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: CompleteOrthogonalDecomposition()
Default Constructor.
The default constructor is useful in cases in which the user intends to perform decompositions via CompleteOrthogonalDecomposition::compute(const* MatrixType&)
.
template<typename _MatrixType>
Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: CompleteOrthogonalDecomposition(Index rows,
Index cols)
Default Constructor with memory preallocation.
Like the default constructor but with preallocation of the internal data according to the specified problem size.
template<typename _MatrixType>
template<typename InputType>
Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: CompleteOrthogonalDecomposition(const EigenBase<InputType>& matrix) explicit
Constructs a complete orthogonal decomposition from a given matrix.
This constructor computes the complete orthogonal decomposition of the matrix matrix by calling the method compute(). The default threshold for rank determination will be used. It is a short cut for:
CompleteOrthogonalDecomposition<MatrixType> cod(matrix.rows(), matrix.cols()); cod.setThreshold(Default); cod.compute(matrix);
template<typename _MatrixType>
template<typename InputType>
Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: CompleteOrthogonalDecomposition(EigenBase<InputType>& matrix) explicit
Constructs a complete orthogonal decomposition from a given matrix.
This overloaded constructor is provided for inplace decomposition when MatrixType
is a Eigen::
template<typename _MatrixType>
MatrixType::RealScalar Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: absDeterminant() const
Returns | the absolute value of the determinant of the matrix of which *this is the complete orthogonal decomposition. It has only linear complexity (that is, O(n) where n is the dimension of the square matrix) as the complete orthogonal decomposition has already been computed. |
---|
template<typename _MatrixType>
const PermutationType& Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: colsPermutation() const
Returns | a const reference to the column permutation matrix |
---|
template<typename _MatrixType>
template<typename InputType>
CompleteOrthogonalDecomposition& Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: compute(const EigenBase<InputType>& matrix)
template<typename _MatrixType>
Index Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: dimensionOfKernel() const
Returns | the dimension of the kernel of the matrix of which *this is the complete orthogonal decomposition. |
---|
template<typename _MatrixType>
const HCoeffsType& Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: hCoeffs() const
Returns | a const reference to the vector of Householder coefficients used to represent the factor Q . |
---|
For advanced uses only.
template<typename _MatrixType>
HouseholderSequenceType Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: householderQ(void) const
Returns | the matrix Q as a sequence of householder transformations |
---|
template<typename _MatrixType>
ComputationInfo Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: info() const
Reports whether the complete orthogonal decomposition was successful.
Returns | Success |
---|
template<typename _MatrixType>
bool Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: isInjective() const
Returns | true if the matrix of which *this is the decomposition represents an injective linear map, i.e. has trivial kernel; false otherwise. |
---|
template<typename _MatrixType>
bool Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: isInvertible() const
Returns | true if the matrix of which *this is the complete orthogonal decomposition is invertible. |
---|
template<typename _MatrixType>
bool Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: isSurjective() const
Returns | true if the matrix of which *this is the decomposition represents a surjective linear map; false otherwise. |
---|
template<typename _MatrixType>
MatrixType::RealScalar Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: logAbsDeterminant() const
Returns | the natural log of the absolute value of the determinant of the matrix of which *this is the complete orthogonal decomposition. It has only linear complexity (that is, O(n) where n is the dimension of the square matrix) as the complete orthogonal decomposition has already been computed. |
---|
template<typename _MatrixType>
HouseholderSequenceType Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: matrixQ(void) const
template<typename _MatrixType>
const MatrixType& Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: matrixQTZ() const
Returns | a reference to the matrix where the complete orthogonal decomposition is stored |
---|
template<typename _MatrixType>
const MatrixType& Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: matrixT() const
Returns | a reference to the matrix where the complete orthogonal decomposition is stored. |
---|
template<typename _MatrixType>
MatrixType Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: matrixZ() const
Returns | the matrix Z. |
---|
template<typename _MatrixType>
RealScalar Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: maxPivot() const
Returns | the absolute value of the biggest pivot, i.e. the biggest diagonal coefficient of R. |
---|
template<typename _MatrixType>
Index Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: nonzeroPivots() const
Returns | the number of nonzero pivots in the complete orthogonal decomposition. Here nonzero is meant in the exact sense, not in a fuzzy sense. So that notion isn't really intrinsically interesting, but it is still useful when implementing algorithms. |
---|
template<typename _MatrixType>
const Inverse<CompleteOrthogonalDecomposition> Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: pseudoInverse() const
Returns | the pseudo-inverse of the matrix of which *this is the complete orthogonal decomposition. |
---|
template<typename _MatrixType>
CompleteOrthogonalDecomposition& Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: setThreshold(const RealScalar& threshold)
Parameters | |
---|---|
threshold | The new value to use as the threshold. |
Allows to prescribe a threshold to be used by certain methods, such as rank(), who need to determine when pivots are to be considered nonzero. Most be called before calling compute().
When it needs to get the threshold value, Eigen calls threshold(). By default, this uses a formula to automatically determine a reasonable threshold. Once you have called the present method setThreshold(const RealScalar&), your value is used instead.
A pivot will be considered nonzero if its absolute value is strictly greater than where maxpivot is the biggest pivot.
If you want to come back to the default behavior, call setThreshold(Default_
template<typename _MatrixType>
CompleteOrthogonalDecomposition& Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: setThreshold(Default_t)
Allows to come back to the default behavior, letting Eigen use its default formula for determining the threshold.
You should pass the special object Eigen::Default as parameter here. qr.setThreshold(Eigen::Default);
See the documentation of setThreshold(const RealScalar&).
template<typename _MatrixType>
template<typename Rhs>
const Solve<CompleteOrthogonalDecomposition, Rhs> Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: solve(const MatrixBase<Rhs>& b) const
Parameters | |
---|---|
b | the right-hand sides of the problem to solve. |
Returns | a solution. |
This method computes the minimum-norm solution X to a least squares problem
where A is the matrix of which *this
is the complete orthogonal decomposition.
template<typename _MatrixType>
RealScalar Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: threshold() const
Returns the threshold that will be used by certain methods such as rank().
See the documentation of setThreshold(const RealScalar&).
template<typename _MatrixType>
const HCoeffsType& Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: zCoeffs() const
Returns | a const reference to the vector of Householder coefficients used to represent the factor Z . |
---|
For advanced uses only.
template<typename _MatrixType>
static void Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: check_template_parameters() protected
template<typename _MatrixType>
template<bool Transpose_, typename Rhs>
void Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: _check_solve_assertion(const Rhs& b) const protected
template<typename _MatrixType>
template<typename Rhs>
void Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: applyZAdjointOnTheLeftInPlace(Rhs& rhs) const protected
Overwrites rhs with .
template<typename _MatrixType>
template<bool Conjugate, typename Rhs>
void Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: applyZOnTheLeftInPlace(Rhs& rhs) const protected
Overwrites rhs with or if Conjugate
is set to true
.
template<typename _MatrixType>
void Eigen:: CompleteOrthogonalDecomposition<_MatrixType>:: computeInPlace() protected
Performs the complete orthogonal decomposition of the given matrix matrix. The result of the factorization is stored into *this
, and a reference to *this
is returned.